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Abstract: Investments in software, R&D, and advertising have grown rapidly, now 
approaching half of U.S. private nonresidential investment. Yet just a few hundred firms 
account for almost all this growth. Most firms, including many large ones, regularly invest 
little in capitalized software and R&D, and this “intangible divide” has surprisingly deepened 
as intangible prices have fallen relative to other assets. Using comprehensive US Census 
microdata, we document these patterns and explore a variety of factors associated with 
intangible investment. We find that firms invest significantly less in innovation-related 
intangibles when their rivals invest more. One firm’s investment can obsolesce rivals’ 
investments, reducing returns. This negative pecuniary externality contributes to the 
intangible divide and may imply substantial misallocation. 
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Introduction 

Capital investment in intangible assets, such as research and development (R&D), 

software, advertising, and artistic originals has grown rapidly, making it a major driver of 

economic growth in recent decades (Corrado, Hulten, and Sichel 2009). Data from the 

Bureau of Labor Statistics (BLS) shows that the share of U.S. private nonresidential 

investment going to these intangible assets has grown dramatically from an estimated 24% in 

1987 to 40% today (see Figure 1). Some economists attribute this growth to declining prices 

of these assets relative to other investment goods (Zhang 2019; Lashkari, Bauer, and 

Boussard 2024). Figure 2 shows BLS asset prices for these intangibles relative to the asset 

price for structures, and, indeed, relative prices for software have plummeted 5.4% per year 

while those for R&D and advertising experienced more modest relative declines.1  

Yet, what aggregate statistics do not show is that this investment is hardly uniform. 

First, the rise is not about intangible investment generally, but is specifically about growth in 

R&D and capitalized software developed for internal use. These two assets account for 94 

percent of the aggregate growth in Figure 1, and they are distinctly related to innovation—the 

majority of capitalized software is for the development of new applications for internal use 

that can be properly classified as innovation (see below). Second, as demonstrated in this 

paper, over ninety percent of the growth in software and R&D capital expenditures is 

accounted for by just a few hundred firms, while most firms make no detectable formal 

capital investments in any given year. These two phenomena underscore a substantial 

“intangible divide” between firms’ innovation investments and, surprisingly, this divide has 

deepened even as the relative prices of intangible assets have fallen—investment grew 

sharply for top firms but not for others and fewer firms invest at all in any year. Importantly, 

this skewness is not observed in other intangible assets such as advertising. Given well-

established evidence showing that software and R&D improve firm productivity, why do so 

 

1 Thanks to Corby Garner of BLS for providing the data. These are aggregated, weighting each detailed asset 
category by current investment. Figure 2 excludes equipment, which also declined dramatically, thanks to price 
declines of digital technology. However, as digital equipment typically complements software, the interpretation 
of Figure 2 would not really change by including equipment. Also, official price indices for software may 
sharply understate the rate of decline (Fleming 2023). Own-account software and custom software prices 
declined a smaller, but still substantial 3.3% per year relative to structures. Advertising price declines may be 
understated also because the statistics don’t account for the rise of higher quality digital advertising 
(Sveikauskas et al. 2023). 
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few firms invest?2 And why haven’t sharp drops in asset prices induced more firms to invest 

in innovation?  

Large scale non-investment is not necessarily at odds with the standard workhouse 

model of invention (Nordhaus 1967; Scherer 1972). In this model, inventors face an 

“invention possibilities frontier” that is initial convex but becomes concave at higher levels 

of investment. This convexity could be because of fixed costs of conducting R&D or other 

reasons such as alternative sources of knowledge (see below). Because firms vary in the 

returns they earn from R&D, they face different “invention possibilities frontiers.” As a 

result, at a given price of R&D, some firms may find investing in it unprofitable and hence 

choose not to invest, while others do. However, a drop in the price of R&D should make 

investment profitable for more firms.3 And a substantial drop—such as the fall in software 

prices—should significantly increase the share of firms that invest. We observe no such 

increase, posing a puzzle. 

This paper first documents this puzzle and the skewness of innovation investment 

generally. We next present a model that explains the observed behavior as the result of 

strategic interaction between firms. We then run regressions to test the importance of this 

strategic interaction as well as a range of other factors that might influence innovation 

investment decisions. 

We begin by presenting descriptive statistics about the intangible divide, looking at 

different types of intangibles in comprehensive samples of firms from the US Census across 

most industries over a decade or longer. We find: 1) the top 250 firms ranked by intangible 

investment account for most of it, 2) most firms do not regularly invest in capitalized 

software and R&D in our sample, but most do invest in advertising, 3) almost all of the 

substantial growth in intangible investments over the last decade can be attributed to the top 

firms, and 4) the share of firms (and their share of revenues) that do not invest in R&D and 

capitalized software has actually grown over the last decade, despite falling relative asset 

 

2 A large literature finds substantial private returns to R&D (see review in Hall, Mairesse, and Mohnen 2010). 
Other research has found a positive link between firm productivity or firm value and information technology 
generally (Brynjolfsson and Hitt 1996; Brynjolfsson, Hitt, and Yang 2002) and with own software investment 
specifically (Tambe and Hitt 2012). Advertising has also been related to firm market value (Villalonga 2004; 
Peters and Taylor 2017). 

3 The drop in the price of performing R&D is only relative to other asset prices or to GDP; the drop in the 
price of software is absolute. 
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prices.  

Our descriptive analysis can rule out some simple explanations for widespread non-

investment. While innovation investments differ substantially by industry, industry 

differences do not explain the divide—we see substantial non-investment even in industries 

that have heavy investors. Nor can non-investment be explained by outsourcing of R&D 

and software development, nor by under-reporting of intangible investments by smaller 

firms. 

We argue that the individual inventor model is incomplete because it ignores 

strategic interaction. Firms consider the risk of obsolescence when they make investment 

decisions. In Schumpeterian models of growth (Aghion and Howitt 1992; Grossman and 

Helpman 1991), technological advance by some firms corresponds to the “creative 

destruction” of others. This means that heavy investments in innovation by some firms can 

raise rivals’ obsolescence risk. But if an innovation is more likely to be obsolesced, then its 

expected return will necessarily be less. Facing lower expected returns, firms will invest less 

in innovation, all else equal.  This negative pecuniary externality means that firms may 

diverge in their responses to falling asset prices.  

We develop a model that can explain the divergence. Faced with technological 

competition, firms may invest in developing their own proprietary technology to achieve 

competitive advantage. But one firm’s competitive advantage is another firm’s disadvantage, 

implying “business stealing.” The model shows that faced with falling asset prices, some 

firms will increase their investment, but that increased rivalry may induce their rivals to 

invest less or to not invest at all under some conditions. 

We test the role of rivalry by running regressions against a set of explanatory 

variables on the likelihood that firms will invest in innovations and on the amount that they 

invest if they choose to do so. Consistent with our model, the two strongest predictors of 

R&D and software investment are firm size, which is strongly positive, and investments in 

these assets by other firms in the same industry, which is strongly negative. Using an 

instrumental variable based on changes in R&D tax treatment, we find that the negative 

impact of rivals’ R&D is plausibly causal. 

Thus, investment in innovation is highly skewed, there is widespread non-

investment, and our evidence supports the notion that negative pecuniary externalities shape 

the innovation landscape. Indeed, negative pecuniary externalities imply misallocation of 
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investment—some firms, facing a “tax,” will invest too little. While it is beyond this paper to 

examine overall welfare effects, the resulting investment skew may be important. If firms 

face diminishing returns to their intangible investments, then the intangible divide may 

potentially raise concerns about a significant misallocation that might slow productivity 

growth and undermine entrepreneurial dynamism.  

Heterogenous obsolescence 

Our key insight is that firm decisions to invest in innovation are affected by rivals’ 

investments that raise the risk that a firm’s own investments will soon become obsolete. A 

firm facing a higher risk of obsolescence will invest less, all else equal, because obsolescence 

reduces the expected future profit stream. Even within industries, firms will face 

heterogeneous obsolescence risks and innovation incentives because each firm faces 

different rivals. Asset price reductions increase innovation incentives for firms with low 

obsolescence risk, but that increased investment raises obsolescence risk for other firms. 

Some firms, facing higher obsolescence risk, may then reduce investment, leading to 

divergent investment behavior. 

Of course, obsolescence is widely recognized. Economists typically treat 

obsolescence by assigning fixed, uniform depreciation rates to R&D and software, often at 

very high levels. For example, the BEA assigns R&D depreciation rates as high as 40 percent 

for some industries and software depreciation rates as high as 55 percent. Unlike tangible 

assets, knowledge assets do not “wear out,” becoming less productive with time. Instead, 

they become less valuable for generating profits. For instance, quasi-rents are reduced when 

rivals use spillover knowledge or as rivals develop alternative technologies making the 

original knowledge obsolete. Yet note that both these sources of depreciation depend on the 

actions of rivals. A firm’s risk of obsolescence depends significantly on the technological 

competition it faces in its product markets. Firms facing many rivals who invest in 

innovation are likely to experience much more rapid obsolescence, all else equal. While some 

obsolescence occurs exogenously—for example, antibiotics become less valuable as 

microbes naturally develop resistance—much obsolescence arises endogenously from 

Schumpeterian rivalry.  
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However, the prevailing assumption is that knowledge assets experience entirely 

exogenous and uniform rates of depreciation independently of product market rivalry.4 This is a 

strong assumption that does not appear to have been explicitly discussed in the empirical 

literature. While this may have been an innocuous assumption in early R&D research where 

economists assumed low or insignificant rates of depreciation (under 10 percent),5 with 

today’s much higher rates of depreciation and obsolescence, it may be one abstraction too 

many for firm level analysis. 

We contend, in contrast, that the risk of obsolescence is endogenous in the sense 

that it depends on rivals’ actions. And this means that firms face different obsolescence risks 

in different industries and even within narrowly defined industries. A small firm facing a rival 

that invests heavily in innovation will face a greater risk of obsolescence, all else equal, than 

the large firm will face. This asymmetry can explain divergent investment behavior and it has 

important implications for econometric analysis, for policy, and for the distribution of 

innovative activity. 

Consider, for example, the rivalry between Walmart and Dollar General. Walmart 

has become the world’s biggest retailer using proprietary information technology (Basker 

2007; Bessen 2022 chapter 1). Walmart spends over $10 billion a year on IT, hires many 

hundred software developers each year, and uses its proprietary systems (also involving 

hardware and organization) to stock its stores with an unparalleled selection of products—

140,000 stock keeping units (SKUs) in its Supercenter stores—that are delivered efficiently 

and at low cost. Low prices and large selection are powerful draws for consumers who prefer 

“one-stop shopping.” In contrast, Dollar General invests almost nothing in developing its 

own software although it purchases prepackaged software for some functions.6 Dollar 

General has many more stores than Walmart, but these stores are much smaller and offer a 

 

4 The BEA and Li and Hall (2020) assign different R&D depreciation rates to some industries, but the 
assumption is still uniform depreciation rates within industries. Papers using patent data have measured 
individual obsolescence rates for different firms (Caballero and Jaffe 1993; Ma 2021). 

5 The early researchers on R&D commonly ignored R&D depreciation altogether (Griliches 1980, 424) or they 
assumed very low values, e.g., 4-7 percent (Mansfield 1968). Assuming these low levels of depreciation to be 
independent of industry conditions was of no great consequence. However, at the high rates of depreciation 
used today, the assumption seems less tenable. 

6 From 2013-18, Dollar General advertised online for only 18 software developer jobs; during the same period, 
Walmart advertised for 4,131 (Burning Glass data). A Bank of America study finds that Walmart offers lower 
prices than Dollar General in groceries. See https://www.supermarketnews.com/retail-financial/walmart-
trumps-dollar-general-when-it-comes-price. 
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limited selection (10-12,000 SKUs). Dollar General competes against Walmart on geography 

rather than on product—it has many stores, especially in rural towns, that are closer to many 

consumers than the Walmart Supercenters. 

Why doesn’t Dollar General invest more in IT systems so that it could offer greater 

selection and lower prices? Because the returns to adding new products might be low. A new 

product line offered by Dollar General is more likely to run into competition from new or 

existing products offered by Walmart, dissipating possible rents. While Dollar General might 

have good payoffs to other sorts of R&D or software development, Walmart’s innovative 

advantage reduces Dollar General’s incentives to invest in new products. New products 

introduced by Walmart do not face comparable obsolescence risk from Dollar General. The 

risks are asymmetric. Similar negative pecuniary externalities are also a feature of quality 

ladder growth models (Grossman and Helpman 1991; Aghion and Howitt 1992) as well as in 

Sutton’s models of vertical differentiation (1991; 2001).  

In addition to asymmetric obsolescence risk, firm investment patterns are affected by 

knowledge spillovers. Substantial spillovers mean that many firms can acquire the knowledge 

needed to engage in production without formally investing in innovation themselves. In 

other words, formal investments in R&D and software are not essential to production or even 

profitability. Hence, while almost all firms invest in tangible assets, we see many firms that 

do not invest in R&D or software. 

While non-investment in software has been little studied, economists have long been 

aware of non-investment in R&D. Beginning in the 1950’s and 1960’s, researchers using 

NSF survey data documented that many firms did not invest in R&D even in R&D-intensive 

industries (Villard 1958; Hamberg 1964; Nelson, Peck, and Kalachek 1967; Bound et al. 

1982; see Mezzanotti and Simcoe 2023 for a recent reprise). Some economists explored why 

firms might not report R&D and whether non-performing firms introduced selection bias in 

estimates of the returns to R&D (Bound et al. 1982; Hall, Mairesse, and Mohnen 2010 p. 

18). A related literature looks at how firm size affects R&D spending among those firms that 

do invest (for a review see Cohen 2010). But most of the research on returns to R&D has 

simply overlooked the large numbers of non-investing firms (but see Doraszelski and 

Jaumandreu 2013; Cappelen et al. 2023). Following Griliches (1979), some of these 

researchers have also considered spillover externalities of R&D (for a review and meta-

analysis see Hall, Mairesse, and Mohnen 2010; Ugur et al. 2016). A few of these papers have 
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also included negative externalities from product market rivalry that our study highlights 

(Bloom, Schankerman, and Van Reenen 2013; Lucking, Bloom, and Van Reenen 2019; 

Arora, Belenzon, and Sheer 2021). In contrast to these papers, which study select samples of 

public firms, we use representative samples that can capture the effects of product market 

rivalry on small and private firms. 

Our paper is also related to recent empirical work that ties some intangible 

investment to rising industrial concentration and markups (Bessen 2020; Calligaris, 

Criscuolo, and Marcolin 2018; Crouzet and Eberly 2018; Brynjolfsson, Jin, and Wang 2023; 

Mouel and Schiersch 2023; Lashkari, Bauer, and Boussard 2024) and a variety of theoretical 

explanations have been advanced for such a link (De Ridder 2023; Aghion et al. 2019; Hsieh 

and Rossi-Hansberg 2019; Haskel and Westlake 2018). To the extent that firm market shares 

are influenced by firm intangible investments, the rising skewness of intangible investment 

contributes to the rise in industry concentration. Moreover, our finding that an elite group of 

firms dominate intangible investment may be related to the “superstar” firms and 

“megafirms” found by other researchers (Autor et al. 2020; Song et al. 2019). 

Descriptive statistics 

Data 

We use confidential microdata collected by the US Census to explore intangible 

capital expenditures in R&D and software, and in purchased advertising and promotional 

services. The investments we measure might best be viewed as proxies for broader 

investments in new systems that might also include complementary investments in 

unmeasured activity, such as inhouse marketing expenditures, investments in complementary 

organizational changes, and informal experimentation.   

For each of the investments we measure, we construct a sample over roughly a 

decade ending in 2017 or 2018, covering companies with employees and revenues in the US 

nonfarm for-profit sector, including small firms. For survey-based data, we use sampling 

weights to obtain representative samples. Our analysis is at the firm level and because of data 

limitations, we construct unbalanced panels. For this reason, most of our analysis is repeated 

cross-sectional, but we do conduct robustness checks using lagged variables. 
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Because we focus on studying the effects of innovation-related intangibles at 

improving the firm’s products and services, we exclude industries where the product is the 

intangible itself.7 Our samples also consist of firms with positive revenues. This restriction 

makes the samples consistent over time and revenue-generating firms are arguably more 

representative of economic activity. In any case, the share of intangible investment by non-

revenue firms is small and our general results are similar if we include them (results not 

disclosed). 

Other than these restrictions, for software and R&D, our data cover all private non-

farm industries. For advertising, we study just the manufacturing sector due to data 

limitations. Although manufacturing accounts for just a fraction of all advertising, the 

Census of Manufactures provides advertising data for a comprehensive sample of 

establishments. 

Our intangible data come from three main sources:  

1. The Business R&D and Innovation Survey (BRDIS), 2009 – 2018, is an annual 

survey of roughly 40,000 for-profit, nonfarm businesses with five or more employees 

done in collaboration with the National Science Foundation's National Center for 

Science and Engineering Statistics.8 This survey provides data on each firm’s 

worldwide R&D expenditures (see further details at Foster, Grim, and Zolas 2016; 

Mezzanotti and Simcoe 2023). 

2. The Annual Capital Expenditures Survey (ACES), 2008 – 2018, surveys 50,000 

companies with employees annually. This survey provides data on capital spending 

on structures and equipment as well as on three types of software: prepackaged, 

vendor-customized, and internally developed. ACES only captures capitalized 

software spending, but much software spending is expensed rather than capitalized 

and some software is free (Open Source) or is purchased as a service. In the 

Appendix, we discuss software capitalization and argue that, given the accounting 

 

7 This follows the practice of the statistical agencies. For example, NIPA includes software development as 
R&D in the software publishing industry (software is the product) but it is counted as software investment in 
the retail industry. Our excluded industries are NAICS 5112, software publishing, 514191, online information 
services, 54151, computer design, 541511, custom programming, 5417, R&D, and 54181, advertising agencies. 
Using BLS and NSF data, we estimate that the excluded industries account for less than 23% of R&D, 18% of 
software, and 8% of advertising in 2018. 

8 The BRDIS survey begins reporting data in 2008, however, the data in that year appear to be incomplete. 
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rules, capitalized software is a good measure of software innovation. Most capitalized 

software represents new applications for internal use that are internally developed or 

customized by vendors. In addition, much of the remaining capitalized software 

(prepackaged) is used for major new systems and is correlated with internally 

developed software (correlation coefficient of .324). While major software 

innovations also involve other expenses such as expensed software, training, 

adaptation, and maintenance, capitalized software serves as a proxy of this broader 

investment. 

3. The Census of Manufactures, 2007 – 2017, covers all manufacturing establishments 

every 5 years. We aggregate data to the firm level. This includes data on purchased 

advertising and promotional services as well as various measures of outsourcing 

including purchased data processing and other computer services, purchased 

professional and technical services, and materials, parts, and supplies that might 

capture embodied new technology. In addition, we link in data on management 

practices from the Management and Organizational Practices Survey, a supplement 

to the Annual Survey of Manufactures (ASM) conducted in 2010 and 2015.9 

The establishment level Longitudinal Business Database (LBD) provides the industry 

code and the zip code of each establishment (Jarmin and Miranda 2002), which provides us 

the number of industries and zip codes a firm operates in. We also use the Revenue-

enhanced Longitudinal Business Database (LBD-rev) that provides firm level data on sales 

as well as data on employees and firm age (Haltiwanger et al. 2016). Unfortunately, revenue 

data cannot be matched for all firms, so our sample, while still broadly inclusive, is not 

complete. Haltiwanger et al. (2016) find that the firms in LBD-rev data are broadly similar to 

the full set of firms on a range of observed characteristics. Below we check the robustness of 

results using revenue data from other sources or we use the full LBD sample when revenue 

 

9 As we are interested in the firm’s management practice in general rather than the change over time, we use the 
management score from 2015 MOPS only. Following Bloom et al.(2019), we adopt the Management Score 
which is constructed by taking unweighted average of the 16 MOPS management questions in MOPS 2015. 
The Management Score variable is prepared by Scott Ohlmacher. For details, please see Bloom et al.(2020)2020 
CES-20-41. Please see detailed questionnaire of 2015 MOPS here: https://www2.census.gov/programs-
surveys/mops/technical-documentation/questionnaires/ma-10002_15_final_3-2-16.pdf (accessed September 
23, 2024). 
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data are not needed. Finally, we include counts of patents granted using a crosswalk to 

patent office data developed by Dreisigmeyer et al. (2018). 

Our base analysis identifies rivals as firms in the same 6-digit NAICS industry, using 

time consistent industry definitions (Fort, Klimek, and others 2016). We also use a weighted 

distance measure to account for firms that produce in multiple industries. These measures 

are crude, and they do not account for geographic and other variations that affect true 

product market rivalry. However, to the extent that we mismeasure rival firm investments, 

our results will be diluted, but we find significant externalities despite this mismeasurement. 

Findings 

Table 1 reports descriptive statistics on the top 250 firms ranked by investment for 

each asset type for each year.10 These small groups of firms dominate intangible investment.  

For instance, column (1) shows top 250 R&D investors contribute over 80% of R&D 

investment. A similar pattern is observed for self-developed software, as shown in column 

(3). In total software and in advertising, the top 250 investors in each respective category 

contribute about 2/3 of the investment.11 By contrast, the top 250 firms ranked by 

investment in tangible assets, that is structures plus equipment, account for only 55% of 

tangible investment. While the rank of 250 is arbitrary, this impression of dominance is 

consistently reinforced when using analyses (not shown) with different cutoffs. 

Below we will see that although industry is an important determinant of intangible 

investment, the story is not as straightforward as a few industries dominating these top 

firms. As the second row shows, the top firms in each column are found in over 100 

different six-digit NAICS industries.  

While the firms in the top groups are large on average—in software and R&D the 

mean revenue is over $10 billion (row 4)—megafirms (those with $10 billion or more in 

 

10 For brevity, we just report results for total software and own-account software investment. Prepackaged and 
custom software are correlated with own account software. The correlation coefficients are .324 and .205 
respectively. 

11 We exclude observations that do not report the intangible investments. These missing values account for 40 
percent in the R&D data and 12 percent in the software data. If these observations represent zero investments, 
our measures of skewness will be understated. Koh et al. (2022) explore factors related to non-reporting of 
R&D data in financial statements. 
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revenues) comprise a minority of these groups and in total, these top groups account for a 

minority of revenue overall (row 5). 

Finally, the composition of these top groups changes somewhat each year. Do firms 

nevertheless tend to stay in the top 250? Although we are limited by the unbalanced nature 

of our panel, row 6 of the table suggests a high degree of persistence for R&D and software: 

of the firms listed in the top 250 in 2018 and which were also present in the data a decade 

earlier, over half were in the top 250 then. Furthermore, the top software firms seem to be a 

largely distinct group from the top R&D firms—only 21% are in both.  

Table 2 shows the shares of firms that report zero investment in each intangible 

(missing values are excluded). Over 90% of firms report zero investment in capitalized 

software and R&D (a lower share of firms report zero expensed software; see Appendix). 

The picture is quite different for advertising where only 32% of firms don’t advertise each 

year. This might be because advertising investments do not spill over, as noted above. 

The second row shows the share of revenue of these zero-investment firms. Over 

half of all firm revenue is accounted by firms that invest zero in R&D and self-developed 

software; that share is less for total software and even less for advertising. However, these 

figures may overstate the extent of non-investment because much investment tends to be 

“lumpy” (Doms and Dunne 1998; Haltiwanger, Cooper, and Power 1999). Smaller firms 

might not invest every year because of this lumpiness. Using a panel of firms that we 

observe for 5 or more consecutive years, we still find a large share of firms that do not invest 

in R&D and own-account software over 5-year periods (not shown). Moreover, the table 

shows a sharp contrast with tangible capital even looking at single years—only 11% of 

revenue comes from firms that invest nothing in tangible capital in any given year. This 

difference also appears in Figure 3 which shows the share of firms that invest in each 

intangible by the revenue size of the firm. Even among quite small firms, the majority invest 

in tangible capital and advertising; however, firms must be well over $1 billion in sales before 

a majority invest in R&D or own-account software in any given year.  

The bottom rows of Table 2 show that non-investment, while varying by industry, is 

not largely determined by industry. Row 3 repeats row 2 from the previous table, showing 

the number of distinct industries with firms that are in the top 250. The next two rows show 

the share of firms with zero investment in just those industries and the share of revenue for 
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those non-investing firms. Clearly, non-investment in R&D and own-account software is still 

substantial even in those industries where some firms invest heavily. 

One concern about the estimates in both Tables 1 and 2 is possible under-reporting. 

First, to be clear, we are not counting firms that fail to respond to survey questions about 

investment; the non-investors are firms that do respond but answer “0.” Also, we are only 

concerned about formal investments. Firms may tinker and experiment informally, but that is 

different. Nevertheless, perhaps some firms, especially small firms, might not have the 

accounting procedures in place to track formal R&D or software investments. Also, R&D 

tax credits might provide incentives for firms to categorize some non-R&D expenses as 

R&D, thus exaggerating reported R&D. In the Appendix we compare R&D personnel costs 

reported in the BRDIS survey to the earnings of scientists and engineers from the Current 

Population Survey. We conclude that although there may be some reporting bias, the basic 

picture of the dominance of large firms and substantial non-investment still holds. 

Another concern about the findings in these two tables is that they do not use the 

full survey sample—to obtain revenue data, we match the sample to the LBD-rev, however, 

not all firms are listed in LBD-rev. To check our findings, we use an alternative source of 

revenue data (from BRDIS, see Appendix), finding that scaling by firm size is broadly 

similar. Finally, the Appendix also shows results for software that includes both capitalized 

software (used in Tables 1 and 2) and expensed software. This broader measure of software 

is not as dominated by the top 250 firms, but it also includes software that is not necessarily 

innovation. 

Table 3 looks at how these investment patterns have changed over time. The top 

row shows the total deflated investment for each asset type for two separated years and the 

difference between them. The second row shows the corresponding investment by just the 

top 250 firms and the third row shows the investment of other firms. The fourth row shows 

the share of investment from the top 250 firms; in each case, the share of the top firms 

increased. The fifth row shows the share of the increase accounted for collectively by the top 

250 firms. The top firms account for almost all of the increase. The difference between the 

top and the rest is particularly striking for software. In the face of a 16% price decline from 
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2008 to 2018, investment by the top 250 rose 48% while investment by the rest rose only 

6%.12 

The bottom two rows show the increases for the share of non-investing firms and 

the revenue-weighted share of non-investing firms. These increase for all investment types 

except for a small decrease in non-investing firms for own accounts software and a decrease 

for non-advertisers’ share of sales. Thus, generally, the intangible divide for R&D and 

software seems to be growing wider, top firms sharply increasing their investment, other 

firms hardly increasing investment, and mostly fewer firms investing at all. 

Yet this poses a puzzle because it is occurring against falling relative prices for 

intangible assets. Also, output shares of intangibles have been rising, suggesting rising output 

elasticities. For standard market-based assets, one might think falling prices and rising output 

elasticity would increase investment across the board. 

A Model of Obsolescence 

Investment demand 

We present a model both to guide our empirical analysis and to also demonstrate 

conditions where firms may respond divergently to falling investment prices. The key notion 

we wish to capture in our model is that a firm’s decision to invest in innovation depends in 

part on the risk of obsolescence that the resulting innovations are expected to experience. If 

firm i expects an annual profit stream of 𝜋𝑖 from an innovation, we can define an expected 

obsolescence rate, 𝛿𝑖, such that the net expected profit at time t is 𝑒𝑖
−𝛿𝑡𝜋𝑖.  

Obsolescence risk might vary across firms for at least two reasons. First, if a firm’s 

rivals invest more in innovation, then the probability that rivals might develop a superior 

technology is greater, all else equal. Then 𝛿𝑖 would increase with rivals’ innovation 

investments. Second, firms may differ in the rate at which a superior rival technology 

 

12 Note that the figures in the top of the table are rounded. Also note that the groups of top 250 firms are not 
the same firms in 2008 as in 2018, although the majority are (Table 1). Also, compositional changes by firm size 
do not appear to be substantial. The total number of firms with employees increased by 1% during this period, 
and there were slightly more medium size firms. The share of firms with 1-19 employees fell 0.4%, the share of 
firms with 20-499 employees rose 0.3%, and the share of larger firms did not change significantly. Data from 
US Census, County Business Patterns. 
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diminishes the profit stream. The introduction of a more productive technology does not 

immediately eliminate profits of incumbent firms—obsolescence can take time. A substantial 

literature finds that more productive firms grow faster than less productive firms (and are 

less likely to exit) but this appears to be an extended process (Caves 1998 provides a review). 

For instance, Foster et al. (2016) find that industry entrants have greater technical efficiency 

than older firms, but much smaller size of demand. Demand grows over time as firms build 

“customer bases.”13 But this suggests, conversely, that firms with large customer bases (or 

other idiosyncratic factors that increase demand) might lose demand more slowly in the face 

of a superior rival technology. That is, we might expect the rate of obsolescence, 𝛿𝑖, to be 

smaller for firms with large customer bases, all else equal. Then, if 𝑆𝑖 = ∑ 𝐼𝑗𝑗≠𝑖  measures 

investment by other firms in the same industry, and if 𝑅𝑖 measures the firm’s customer base, 

𝛿𝑖 = 𝛿(𝑆𝑖 , 𝑅𝑖). Below we will parameterize and test both hypothetical sources of 

heterogeneous obsolescence risk. 

We assume that innovations create new products as determined by a version of the 

“knowledge production function” (Griliches 1979) that depends on the firm’s own 

investment and also on “spillovers” from other firms, also measured by 𝑆𝑖.
14 Let the number 

of new products (treated as a continuous variable) that firm i introduces in year 0 be 

𝑛𝑖 = 𝑆𝑖
𝛼𝑖𝐼𝑖

𝛽
,     0 < 𝛼, 𝛽 < 1 (1) 

where 𝐼𝑖 is the firm’s investment in R&D (or software development), 𝑆𝑖 is investment by 

other firms in the same industry, 𝛼𝑖 is the spillover elasticity, which is allowed to vary across 

firms, and 𝛽 is the investment elasticity. In this setup, rivals’ investments have two opposing 

effects: knowledge spillovers provide a greater return on investment while greater 

 

13 See also Dunne, Roberts, and Samuelson (1988) and Cabral and Mata (2003). A variety of theoretical models 
attribute slow demand growth to informational frictions (Radner 2003; Rob and Fishman 2005; Bar-Isaac and 
Tadelis 2008; Arkolakis 2010; Dinlersoz and Yorukoglu 2012; Drozd and Nosal 2012; Perla 2013; Gourio and 
Rudanko 2014; Foster, Haltiwanger, and Syverson 2016). In these models, consumers generally lack 
information about the quality of a firm’s product or brand, but they learn this information over time by 
experience with the products or by various types of communication. Firms can build “customer bases” of 
informed consumers by investing in customer acquisition (e.g., offering discounts to new customers) and by 
disseminating information via sales, marketing, and advertising. 

14 This model treats spillovers and own-investment as complement; previous evidence suggest that firms need 
to invest in order to use spillovers (Mansfield, Schwartz, and Wagner 1981; Cohen and Levinthal 1989). Below 
we find evidence that some firms increase their own investment with greater investment by rivals; this would 
not happen to substitutes. 
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obsolescence risk reduces expected returns. Given a cost 𝑤 of innovation, the total cost of 

innovation is 𝑤 ∙ 𝐼. The firm chooses an optimal level of investment to maximize the present 

value of the expected profit stream less this cost. Then, given a discount rate of 𝑟, the net 

expected present value of current innovations is 

𝑉𝑖(𝐼) = ∫ 𝑛𝑖𝜋𝑖𝑒
−(𝛿𝑖+𝑟)𝑡𝑑𝑡

∞

𝑡=0

− 𝑤𝐼𝑖 =
𝑆𝑖

𝛼𝑖𝐼𝑖
𝛽

𝜋𝑖

𝑟 + 𝛿𝑖
− 𝑤𝐼𝑖 . (2) 

Taking the first order maximizing condition with respect to 𝐼, assuming an interior 

solution, and solving for ln 𝐼, we obtain an investment demand equation, 

ln 𝐼𝑖 =
1

1 − 𝛽
[ln

𝛽𝜋𝑖

𝑤
+ 𝛼𝑖 ln 𝑆𝑖 − ln(𝛿𝑖 + 𝑟)] . (3) 

This describes an interior solution. We assume that if optimal demand is too small, 

the firm will choose to invest nothing, that is, a corner solution will obtain. An investment 

threshold might arise because the firm can gain sufficient knowledge via spillovers to meet 

its production needs; then investment may produce too little additional benefit to exceed the 

cost, that is, there is an opportunity cost. Alternatively, an indivisibility in knowledge 

production (e.g., a firm might not be able to hire a fraction of a scientist) might impose a 

minimum threshold. Generally, if 𝐼𝑖 < 𝑇, the firm will invest nothing. Then, given a 

distribution of firms over the various parameters in (3), something that raises (lowers) 𝐼𝑖 will 

increase (decrease) the share of firms that make positive investments. Thus, equation (3) 

provides a basis for empirical analysis of whether firms invest and, if so, how much. 

Equilibrium 

 Before proceeding to the empirical analysis, it is helpful to explore how this model 

might explain divergent responses to falling investment costs. Each firm sets its investment 

according to (3), taking rivals’ investments, 𝑆𝑖, as given. Assuming a Nash equilibrium, we 

analyze how levels of investment change with the cost of innovation, 𝑤. To make the 

calculation analytically tractable, we examine the case of two rival firms, i and j. Also, without 

loss of significant generality, we assume that 𝑟 = 0. 

We wish to solve for 

𝑑 ln 𝐼𝑖

𝑑 ln 𝑤
=

𝜕 ln 𝐼𝑖

𝜕 ln 𝑤
+

𝜕 ln 𝐼𝑖

𝜕 ln 𝑆𝑖

𝑑 ln 𝑆𝑖

𝑑 ln 𝑤
. (4) 
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With only two firms, note that 𝑆𝑖 = 𝐼𝑗 and 𝑆𝑗 = 𝐼𝑖. Using this and assuming a Nash 

equilibrium, we find (see Appendix) 

𝑑 ln 𝐼𝑖

𝑑 ln 𝑤
=

𝛾𝑖 − 𝛼𝑖 − (1 − 𝛽)

(1 − 𝛽)2 − (𝛾𝑖 − 𝛼𝑖)(𝛾𝑗 − 𝛼𝑗)
,      𝛾𝑖 ≡

𝜕 ln 𝛿𝑖

𝜕 ln 𝑆𝑖
, (5) 

where 𝛾𝑖  is the elasticity of the obsolescence rate with respect to rival investment. This 

implies that 
𝑑 ln 𝐼𝑖

𝑑 ln 𝑤
>

𝑑 ln 𝐼𝑗

𝑑 ln 𝑤
   if   𝛾𝑖 − 𝛼𝑖 > 𝛾𝑗 − 𝛼𝑗.15 That is, because firm i has a high 𝛾 

relative to 𝛼, it is more sensitive to rivals’ investment and hence has a more elastic response 

to changes in the investment price. Given sufficient heterogeneity in these parameters, we 

can identify a necessary condition for divergent investment behavior: 

𝑑 ln 𝐼𝑖

𝑑 ln 𝑤
> 0 >

𝑑 ln 𝐼𝑗
𝑑 ln 𝑤

   if   𝛾𝑖 − 𝛼𝑖 > 1 − 𝛽 >
(𝛾𝑖 − 𝛼𝑖)(𝛾𝑗 − 𝛼𝑗)

1 − 𝛽
. (6) 

In this case, a decrease in the cost of innovation, 𝑤, will induce less investment by firm i and 

greater investment by firm j. The intuition behind this result is that firms differ in their 

response to increased rivals’ investment. To summarize, differences in firm response to 

rivals’ investment mean that falling prices of innovation investment widen differences in 

investment, and, given sufficient dispersion in 𝛾 − 𝛼, some firms will reduce investment 

when prices fall, or, if their target investment level falls below the threshold, they might no 

longer invest at all. Thus, this model can explain the behavior pattern we observe. The 

bottom line of this analysis is that not only do differences in firm investment persist in the 

face of falling investment prices, but falling prices might even widen the investment 

differences between firms. 

Why might 𝛼 and 𝛾 differ across firms? First, as discussed above, firms with large 

customer bases might respond to rivals’ innovations more slowly; that is, these firms might 

have a lower elasticity 𝛾𝑖 . Similarly, firms with large customer bases might have greater 

“absorptive capacity” (Cohen and Levinthal 1989). That is, large firms may have relatively 

more R&D resources devoted to monitoring and adapting rivals’ innovations.16 Thus 𝛼 

 

15 Assuming the denominator is positive. 

16 And large firms tend to have larger absorptive capacity because they can spread these costs over a larger 
product base (Cohen and Klepper 1996a). 
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might be larger for firms with large customer bases. Below we test for these effects, and we 

find significant evidence for them. 

Regression Analysis 

Empirical implementation 

Is there evidence that firm investment in intangibles is, in fact, significantly 

influenced by rival firm investments? We explore this hypothesis using investment demand 

regressions based on (3), both a linear probability model for whether firms choose to invest 

or not and a regression on log investment for those firms that do invest. 

We can adapt the investment demand equation, (3), parameterizing several terms as 

first order functions of 𝑆𝑖 and 𝑅𝑖. We use revenue to proxy the firm’s customer base and in 

the Appendix we explore alternative revenue measures, including domestic and worldwide 

revenue. We interpret ln(𝛿𝑖 + 𝑟) = 𝑓(ln 𝑆𝑖𝑡−1 , ln 𝑅𝑖𝑡 , 𝑡) as a single function that can be 

locally approximated with a with a translog form and time dummies. Following the 

production function literature, an arbitrary function can be locally approximated using a 

translog form (Christensen, Jorgenson, and Lau 1973), 𝑓(ln 𝑆𝑖𝑡−1 , ln 𝑅𝑖𝑡 , 𝑡) ≈

 𝜙𝑆 ln 𝑆𝑖𝑡−1 + 𝜙𝑆𝑅 ln 𝑆𝑖𝑡−1 ∙ ln 𝑅𝑖𝑡 + 𝜙𝑅 ln 𝑅𝑖𝑡 + 𝜈𝑡  .17 To this we add 𝛼𝑖 ln 𝑆𝑖 and a ln 𝑅𝑖  

term to capture possible size variation in 𝜋𝑖 . Combining these terms, and adding industry 

fixed effects, 

ln 𝐼𝑖𝑡 = 𝜃𝑆 ln 𝑆𝑖𝑡−1 + 𝜃𝑅 ln 𝑅𝑖𝑡 + 𝜃𝑆𝑅 ln 𝑆𝑖𝑡−1 ∙ ln 𝑅𝑖𝑡 + 𝜃𝑋𝑋𝑖𝑡 + 𝜇𝑘 + 𝜈𝑡 + 𝜖𝑖𝑡 (7𝑎) 

where 𝑋𝑖𝑡 is vector of other firm characteristics including firm age, product diversity, 

geographic spread, outsourcing, and management practices, 𝜇𝑘 is a fixed effect for the 6-

digit NAICS industry, 𝜈𝑡 is a year fixed effect, and 𝜖𝑖𝑡 is an error term. In some 

specifications we also include patents granted to other firms in the same industry. We use the 

lag of ln 𝑆 both to avoid contemporaneous shocks that also affect the dependent variable 

and because it is natural to expect a lag (we also instrument this variable, see below). We test 

 

17 We drop the squared terms to improve estimates. 
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our hypotheses using simple tests on coefficients: a negative pecuniary externality 

corresponds to 𝜃𝑆 < 0; such effect is weaker for larger firms if 𝜃𝑆𝑅 > 0.  

Specification (7a) serves to estimate investment demand conditional on firms 

choosing to invest. As above, the decision to invest can be thought of as condition that the 

target demand exceeds some threshold, 𝐼𝑖𝑡 > 𝑇. This condition can be estimated with a 

linear probability model, 

𝑌𝑖𝑡 = 𝜃𝑆 ln 𝑆𝑖𝑡−1 + 𝜃𝑅 ln 𝑅𝑖𝑡 + 𝜃𝑆𝑅 ln 𝑆𝑖𝑡−1 ∙ ln 𝑅𝑖𝑡 + 𝜃𝑋𝑋𝑖𝑡 + 𝜇𝑘 + 𝜈𝑡 + 𝜖𝑖𝑡 (7𝑏) 

where the dependent variable, 𝑌𝑖𝑡, is a binary variable that is one if firm i invests at time t and 

is zero if the firm does not invest then. 

We construct two different measures of 𝑆𝑖𝑡−1 based on the intangible investments of 

rival firms. In the R&D literature, the effect of rivals’ investments is captured as a weighted 

sum of rivals’ R&D capital stocks, where R&D stocks are constructed from investment 

flows over many years using the perpetual inventory method (Bloom, Schankerman, and 

Van Reenen 2013; Lucking, Bloom, and Van Reenen 2019; Arora, Belenzon, and Sheer 

2021). Given our data, we cannot construct capital stocks without severely limiting our 

sample and, in any case, assuming constant depreciation rates is problematic. Since we want 

to analyze a broad representative sample, we instead construct a measure based on just the 

past year’s intangible investments for firms in industry J:18 

𝑆𝑖,𝑡−1
1 ≡ ∑ 𝐼𝑗,𝑡−1𝑗≠𝑖

𝑗∈𝐽

 

where the industry is defined as the firm’s primary 6-digit NAICS industry.  

This simple metric is our preferred measure of intangible rivalry. However, while the 

overwhelming majority of firms sell in only one industry, there are many multi-industry 

firms. While industry activity is typically identified at the establishment, investment in R&D 

and software in our data is recorded at the firm level. If firms direct their innovative activity 

predominately to their main industry, 𝑆𝑖
1 is a reasonable measure where it is calculated using 

the firm’s primary industry and the regression then captures the effect of rivalry in that 

industry. Otherwise, the firm’s intangible investment might be divided proportionally across 

 

18 Regressions using capital stocks typically use last year’s end-of-year stock to avoid confounding the installed 
capital with current year investment. Also, gestation lags mean that only rivals’ earlier investments will affect 
the subject firm’s prospects (Pakes and Schankerman 1979). In any case, current R&D is highly correlated with 
R&D capital stocks (Hall, Griliches, and Hausman 1984). 
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the various industries where the firm is active. To capture this case, we define an alternative 

measure of spillover/rivalry: 

𝑆𝑖,𝑡−1
2 = ∑ 𝑒𝑖𝑘,𝑡−1 ∙ ∑ 𝑒𝑗𝑘,𝑡−1𝐼𝑗,𝑡−1

𝑗≠𝑖𝑘

 

where 𝑒𝑖𝑘 is the share of firm i’s employment in industry k.19 

It is possible that both of these measures might be endogenous. For instance, an 

increase in “technological opportunity” in an industry might both increase the dependent 

variable and also increase the spillover/rivalry measure, biasing coefficient 𝜃𝑆 upwards. For 

R&D, we are able to use an instrumental variable approach developed by Bloom et al. (2013) 

and described in the Appendix. The instrumental variable is the log of the tax cost of R&D 

capital. The tax cost of R&D is the after-tax cost of each dollar of R&D investment, taking 

into account state and Federal tax rates, R&D tax credits, and depreciation allowances. The 

tax cost varies with changes in the state and Federal tax treatments of R&D that are plausibly 

exogenous from specific national industry conditions. It’s worth noting that, although this 

instrument has been used in the literature, it does raise a possible violation of the exclusion 

restriction: if rival firms perform R&D in the same state as the focal firm, then that state’s 

R&D tax cost will be correlated with both the dependent variable and the instrument. In the 

Appendix we show that any such effect is not significant, and we find very similar results 

using an instrument that excludes rivals in the same state. 

Finally, in our data a few percent of the estimates of 𝑆𝑖 are either very small or zero. 

These observations turn out to be influential outliers and, we suspect, they reflect 

incomplete capture in the surveys. To avoid outlier problems, we replace ln 𝑆𝑖𝑡−1 with the 

inverse hyperbolic sine, asinh 𝑆𝑖𝑡−1 = ln (𝑆𝑖𝑡−1 + √1 + 𝑆𝑖𝑡−1
2 ). 

 

19 In calculating this measure, we exclude establishments that are management facilities (NAICS 55) or 
intangible producing establishments (NAICS 54). We also limit the calculation to the firm’s four largest 
industries. Another approach used by Bloom et al. (2013) measures rivalry effects by weighting other firm 
investments by their “closeness” to firm i, measured as the cosine similarity of their shares in different 
industries (see also Lucking, Bloom, and Van Reenen 2019; Arora, Belenzon, and Sheer 2021). For example, 
consider three firms: two have 75% of their activity in automobile manufacture and 25% in auto loans; the 
third has 75% of its activity in automobile manufacture and 25% in tractor manufacture. The first two are 
“closer” to each other, but for our purposes, the effect of automobile innovations resulting from intangible 

investment would be the same across all three. Hence, we prefer 𝑆𝑖
2 which will reflect that difference. Also, the 

cosine similarity measure is prohibitively time-consuming to calculate for our large sample using 6-digit 
industries; Bloom et al. use 4-digit industry segments in a small sample of R&D-performing firms. 
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Regression results 

Log investment 

Table 4 shows regressions on the log of real intangible investment in R&D and total 

software, including both OLS and IV estimates for R&D, for those firms that choose to 

invest.20 We standardize the independent variables by dividing each by its standard deviation 

in the sample. Then the coefficient represents the effect of a standard deviation increase in 

the independent variable. Standard errors are clustered by firm. The coefficients are similar 

across all columns. These regressions include 6-digit industry fixed effects and year fixed 

effects.  

Naturally, this regression sample excludes firms that do not invest, that is, where 

𝐼𝑖 < 𝑇. This implies some truncation bias in our regression estimates. However, assuming 

that errors are normally distributed, the standard result finds that this bias attenuates 

coefficient estimates. Hence, the true coefficients should have larger absolute magnitudes 

and any coefficient tests that reject the null hypothesis should still hold true. 

Numerous coefficients are statistically and economically significant, including firm 

age (strongly negative) and the number of industries the firm sells in (strongly positive). The 

geographic dispersion is strongly positive for software but not for R&D. Rivals’ patents do 

not have a significant association.21 

However, the most important independent variables appear to be lagged rivals’ 

investments and firm sales. Even though we include industry fixed effects, rivals’ 

investments are associated with a large decrease in firm investment. The coefficients imply 

that a standard deviation increase in rivals’ investment is associated with investment falling 

by about one half (-.76 and -.58 log points) for small firms on average. These large 

coefficients imply a substantial negative pecuniary externality. However, these estimates 

might be biased because of endogeneity as some exogenous factor can affect both the 

dependent variable and rivals’ investments--biasing the coefficient upward. In this case, our 

estimates would be understated. For R&D, we are able to construct an instrumental variable 

 

20 We do not include own account software in this table because the sample is too small (see row 1, Table 2). 

21 In the table we use the lagged number of patents granted. As a robustness check, we also used the inverse 
hyperbolic sine of lagged patent granted. Results were similar. 



 22 

based on plausibly exogenous changes in state and federal R&D tax credits (see Appendix). 

The estimated IV coefficient (column 2) is negative and somewhat larger in magnitude. This 

suggests that the negative impact of rivals’ investment on investment is significant and 

plausibly causal. 

Also, the interaction term between rivals’ investment and firm revenue is positive, 

meaning that the negative effect of rivals’ investment is more pronounced on small firms 

and less so on large firms. In the Appendix, we check that these effects are robust to 

different measures of firm size. We can measure the size of the net externality at the sample 

mean as 𝜃̂𝑆 ln 𝑆𝑖𝑡−1 + 𝜃̂𝑆𝑅 ln 𝑆𝑖𝑡−1 ∙ ln 𝑅𝑖𝑡, where the bar signifies sample mean. This 

measure of the net externality can be positive or negative, depending on firm size. The last 

two rows of Table 4 show the sample means of this measure for all firms and for firms with 

more than 500 employees. For all firms, the mean, taken using sample weights, is negative; 

for larger firms only, it is significantly positive. Large firms experience net positive spillovers; 

small firms experience net negative product market rivalry externalities.  

This finding can be compared to research by Bloom, Schankerman, and Van Reenen 

that looks at both the positive and negative externalities of R&D investment (2013; see also 

Lucking, Bloom, and Van Reenen 2019). Their analysis has the advantage of separating the 

positive spillover effects from negative pecuniary externalities; lacking patent and R&D data 

for most firms, we can only report the combined effect. However, Bloom et al. achieve this 

separation by focusing on mostly large, publicly listed, R&D-performing and patenting firms. 

While our analysis for large firms confirms such positive net externalities, by taking the 

advantage of a more representative sample using the Census data, we show a negative 

externality on average, which seems to be predominantly driven by small firms.22 A recent 

meta-analysis of the literature suggests that spillover effects may be rather small (Ugur, 

Churchill, and Luong 2020). 

As previously discussed, firms may invest proportionally across the various industries 

where the firm operate. Additionally, a multi-industry firm may face rivals from each of these 

industries. In the Appendix (Table A3), we repeat the regression using the alternative 

measure of industry rival investments 𝑆2 as defined in the previous section. The estimates 

 

22 Also, they include positive spillovers from firms that are technologically close, but which are not necessarily 
rivals in product markets; we only look at positive spillovers within industries. 
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are similar. The coefficient on rivals’ investment is a bit smaller in magnitude for R&D and a 

bit larger for software. But the negative externality appears robust to changes in industry 

definition. 

Another concern is sample selection bias. Because we use lagged rivals’ investment 

and because many firms are not in our survey samples every year, the regression samples 

differ from the original samples, especially for small firms. To correct for this selection, in 

the Appendix we use inverse propensity weights so that our regression results reflect the 

original sample more closely. We find that the negative externalities are greater with these 

weights. 

Likelihood of investing 

Table 5 shows the results for the basic linear probability model (7b). Because the 

sample size is larger, we are able to also include a column for own account software. We also 

add a column for purchased advertising using data from the quinquennial Census of 

Manufactures. Because the advertising sample does not have consecutive years for measuring 

lagged rival investments, we use an alternative specification using log sales and log sales 

squared. These regressions have fixed effects for 6-digit industry and year. Column 2 

provides IV estimates for R&D, which are similar to the OLS estimates in column 1.  

As in the previous table, rival investment and firm sales are important coefficients. 

The coefficients on rivals’ investments are negative and significant, although not as large as 

in the previous table. However, compared to the baseline mean probability of investing, 

shown at the bottom of the table, the coefficients are quite significant. The estimated IV 

coefficient (column 2) is negative and somewhat larger in magnitude. This suggests that the 

impact of rivals’ investment on the likelihood of investment is significant and plausibly 

causal. The other variables show similar coefficients as in the previous table. Younger firms 

are slightly more likely to invest; firms that invest in software tend to sell in more industries 

and more geographic areas, consistent with some macro models. The number of patents 

held by rival firms has, at best, a small positive effect on investment. 

Some firms might choose to outsource innovation activity: they can outsource R&D 

and software development, or they can purchase intermediates that have embodied R&D or 

software. It is possible that many firms, especially small ones, do not invest because they 

outsource instead. We can check whether outsourcing substitutes for own investment by 
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including measures of outsourcing in our linear probability model. The Census of 

Manufactures records various measures of outsourcing including purchased data processing 

and other computer services and purchased professional and technical services. Therefore, 

we restrict our sample to the manufacturing sector and present such estimates in Table 6. 

Because we use the quinquennial Census of Manufactures to gain a complete look at 

manufacturing firms, we cannot construct our lagged measures of rivals’ investment, so we 

use an alternative specification that includes a quadratic in log sales. Outsourced professional 

and technical services have positive coefficients, suggesting that they complement own 

investment instead of substituting. Outsourced software and data processing services have 

positive coefficients that are not statistically significant except for the total software 

regression which has a small and marginally significant negative coefficient. For 

intermediates, the coefficients are not significant except for the total software regression, 

which has a significant positive coefficient. Overall, outsourcing seems to serve more as a 

complement to own investment than as a substitute. 

This regression also includes a measure of advanced management practices. These 

have a substantial positive association with R&D and advertising investment. 

Summary 

Why do so few firms invest in innovation, especially as asset prices have fallen? The 

evidence largely rules out several possible explanations for widespread non-investment in 

R&D and software. It is not just a matter that firms fail to report investment on Census 

surveys. Nor does widespread non-investment arise because firms outsource R&D or 

software development rather than make their own investments; instead, while many firms do 

outsource this activity, outsourcing appears to complement own investment rather than to 

act as a substitute. And while industry is an important factor influencing these investments, it 

is not dispositive. Even in industries that include heavy investors, many other firms do not 

invest.  

We find a variety of factors associated with firm decisions to invest in intangibles and 

with the level of investment chosen by investing firms, including firm age, product diversity, 

and management practices. But the two strongest factors associated with firm investment 

decisions are firm size, which is positively correlated with investment, and rival firm 

intangible investments, which are negatively correlated. Moreover, for R&D, instrumental 
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variable estimation suggests that the investment-suppressing effect of rivals’ investments is 

plausibly causal.  

While many factors affect firm decisions whether to invest in intangibles or not, 

these last two factors are important because they can help explain the high degree of 

concentration in investment that we observe in the data, namely, that a small number of 

mostly large firms account for most of the investment in capitalized software and R&D and 

almost all growth in these investments, even as asset prices have dropped. Technological 

rivalry appears central to understanding the intangible divide. Firms compete fiercely by 

introducing innovations that obsolesce rivals’ competitive advantages. But risk of 

obsolescence affects firms unevenly, tending to reinforce differences in investment.  

Thus, our analysis highlights the importance of rivals’ investments and of the extent 

of non-investment. This is particularly important for empirical analysis. Omitting rivals’ 

investments from R&D regressions may introduce omitted variable bias; the practice of 

limiting samples to firms that invest in R&D may introduce sample selection bias. 

Consideration of these factors also pertains to policy analysis. For example, policies to boost 

R&D via tax credits need to consider not only the effect on R&D performing firms, but also 

on the margin of firms that choose to invest or not. Tax credits might act like declining asset 

prices: they might increase R&D spending by large firms but suppress it for smaller firms. It 

is not clear that this is the best policy outcome, and a recent review of micro-studies 

questions the innovation benefit of tax credits (OECD 2023).  

Conclusion 

The intangible divide is substantial and persistent. A few hundred firms account for 

the lion’s share of investment in R&D and capitalized software, and this divide has persisted 

or even grown in the face of substantial declines in the price of developing software. If 

trends continue, it seems likely that the distribution of investment in innovation will remain 

highly skewed, mostly conducted by a small elite of firms. 

Is this a problem for social welfare? For tangible investments, a skewed distribution 

is not too troubling because market prices may serve to allocate these assets to their best 

uses. However, with innovation-related assets, we find significant externalities and large non-

market activity—firms mainly build their own knowledge assets. That means that the 
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allocation to firms is not necessarily the most advantageous. Asymmetric negative pecuniary 

externalities imply that some firms may invest more than is socially optimal because they 

gain rents from business stealing; other firms will invest too little because they face excessive 

risks of obsolescence. While the former firms may prefer investing in areas that help 

maintain their market power, these latter firms may have valuable technological 

opportunities that go undeveloped.  

There are several reasons to be concerned about highly skewed investment in 

innovation. First, a skewed distribution of investment in innovation might be an ineffective 

way to innovate. For example, Cohen, reviewing the literature on R&D (2010, 140), argues 

that the rate of technical advance depends not just on the level of aggregate R&D 

investment but also on the distribution of innovative activity across firms of different sizes 

and capabilities. Indeed, if individual firms face diminishing returns to investments in R&D 

and software, as is widely assumed, then the social planner will optimally prefer a distribution 

that includes many small investments. And, indeed, Agrawal et al. (2014) compare 

innovation across regions and find that the most innovative regions have both large R&D 

labs and a sizeable population of small ones. Moreover, firms of diverse sizes make 

heterogeneous sorts of innovations that might be complementary: large firm innovations 

may be more oriented to processes or exploiting known technologies while small firms 

might be more oriented to new products and experimenting with new technologies (Pavitt, 

Robson, and Townsend 1987; Scherer 1991; Cohen and Klepper 1996a; 1996b; Ferreira, 

Manso, and Silva 2014). No firm has a monopoly on good ideas, so a high concentration of 

firms that invest in innovation may imply an inefficiently narrow “gene pool.” And while 

small firms may face a larger negative externality from technological rivalry, they 

nevertheless make important disruptive innovations. 

Second, if investments in innovation provide firms with competitive advantages, 

then a skewed distribution might raise industry concentration and markups. Indeed, some 

research relates growing intangible investment to rising industrial concentration and markups 

(Bessen 2020; Calligaris, Criscuolo, and Marcolin 2018; Crouzet and Eberly 2018; 

Brynjolfsson, Jin, and Wang 2023; Mouel and Schiersch 2023; Lashkari, Bauer, and Boussard 

2024). Greater market power may imply social welfare losses and excessive political power.  

Third, to the extent that the intangible divide is driven by the asymmetric impact of 

rival firm investments, greater skewness in innovation investment may limit the growth of 
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new and small firms, even new firms with highly productive technologies. The growth of 

these firms is an important component of aggregate productivity growth (Haltiwanger et al. 

2016) and also may be an important channel of social mobility, especially for minorities or 

women.   

Thus, skewed investment and widespread non-investment of intangibles might create 

real problems, but the impact of skewed investment in intangibles is not well studied, making 

definitive conclusions difficult. More research can reveal the extent to which the intangible 

divide affects innovation, productivity growth, and industry dynamism. 
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Figure 1 Share of US Private Nonresidential Investment, 61 Industries 
Source: BLS 

 

 

Figure 2 Asset Prices Relative to Structures, 61 Industries 
Source: BLS 
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Figure 3. Share of firms that reports positive investment in asset type by firm real 

sales ($2012) 

FSRDC Project Number 2735 (CBDRB-FY23-0284) 
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Tables 

Table 1. Top 250 firms dominate investment, 2017/8 

  (1) (2) (3) (4) (5) 
 

R&D Total 

software 

Own account 

software 

Advertising Tangible 

assets 

Top firms, share of investment 83% 67% 85% 68% 55% 
      

Across many industries 

Top firms, # of 6-digit industries 101 109 108 138 97 
      

Top firms are big, but not all the biggest 

Top firms, share of revenue 17% 23% 19% 18% 26% 

Top firms, mean sales; 11.23 19.27 16.39 5.84 22.13 

   (Billion $2012) 

Share of mega-firms in top 250 23% 38% 31% 12% 49% 
      

Top firms are persistent and in distinct groups 

Continuity Percent 72% 53% 53% 51% 64% 

Top 250 overlap with top R&D   21%       

Note: Data from 2018 except for advertising, which is from 2017. All estimates are weighted 
using Census population weights for each survey (excluding advertising data). Advertising 
estimates come from the Census of Manufactures; R&D data come from BRDIS; other data 
from ACES. The samples exclude firms without revenue and firms in intangible-producing 
industries. FSRDC Project Number 2735 (CBDRB-FY23-0284) 
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Table 2. Most firms do not invest in R&D and Software 

  (1) (2) (3) (4) (5) 
 

R&D Total 

software 

Own account 

software 

Advertising Tangible 

assets 

Share of firms with no investment 97% 93% 99% 32% 63% 

Share of sales of non-investors 62% 35% 62% 18% 11% 
      

Even in industries that include top 250 firms 

Top firms, # of 6-digit industries 101 109 108 138 97 

Share of firms with no investment 88% 94% 99% 25% 67% 

Share of sales of non-investors 25% 21% 49% 9% 3% 

Note: Reporting firms that enter 0 investment (observations with missing data are excluded) 
in any year. Data from 2018 except for advertising, which is from 2017. For each asset, the 
top 250 firms are selected annually. All estimates are weighted using Census population 
weights for each survey (excluding advertising data). Advertising estimates come from the 
Census of Manufactures; R&D data come from BRDIS; other data from ACES. The 
samples exclude firms without revenue and firms in intangible-producing industries. FSRDC 

Project Number 2735 (CBDRB-FY23-0284) 
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Table 3. Top firms grow more dominant while non-investing share increases 

 
R&D Total SW Capex Own-account  

SW Capex 

Purchased 

Advertising 

 ($ billions) ($ billions) ($ billions) ($ billions) 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Year 2009 2018 △ 2008 2018 △ 2008 2018 △ 2007 2017 △ 

Intangible investment 
           

All firms 165 227 62 52 66 14 17 31 14 10 15 6 

   Top 250 firms 132 189 58 30 44 14 14 26 12 6 10 4 

   Other firms 33 38 4 22 22 0 3 5 2 3 5 1 

Top 250 share 80% 83%  58% 67%  82% 85%  57% 68%  

Top 250 share of 

increase 

  93%   99%   89%   76% 

Non-investing firms 
           

Share of firms with  

no investment 

96.8% 97.3% 0.5% 90.0% 93.4% 3.4% 99.6% 99.2% -0.4% 19.0% 32.1% 13.1% 

Share of sales of  

non-investing firms 

60.2% 61.7% 1.5% 21.7% 34.6% 12.9% 60.7% 62.3% 1.6% 22.2% 17.6% -4.6% 

Note: Investment amounts are in billions of 2012 dollars. For each asset, the top 250 firms 
are selected annually. All estimates are weighted using Census population weights for each 
survey (excluding advertising data). Advertising estimates come from the Census of 
Manufactures; R&D data come from BRDIS; other data from ACES. The samples exclude 
firms without revenue and firms in intangible-producing industries. For this reason, totals 
are less than corresponding totals in the National Accounts. In addition, these are deflated 
figures and exclude expensed software. FSRDC Project Number 2735 (CBDRB-FY23-0284) 
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Table 4. Log investment demand 

 
(1) (2) (3) 

 
Log R&D Log R&D Log Total software 

  OLS IV OLS 

Asinh rivals’ investmentt-1 -0.7592*** -0.8846*** -0.5834*** 
 

(0.1444) (0.1474) (0.2052) 

Log sales 1.229*** 1.217*** 1.204*** 
 

(0.1037) (0.0968) (0.1758) 

Asinh rivals’ investmentt-1 x Log sales 0.1443*** 0.1623*** 0.1343*** 
 

(0.0267) (0.0274) (0.0395) 

Firm age -0.1011*** -0.1014*** -0.0805** 
 

(0.0269) (0.0269) (0.0400) 

No. of industries 0.1392*** 0.1381*** 0.2557*** 
 

(0.0154) (0.0153) (0.0215) 

No. of zip codes -0.0035 -0.0029 0.1239*** 
 

(0.0236) (0.0235) (0.0152) 

Rivals’ patents 0.0288 0.0296 0.0229 
 

(0.0255) (0.0255) (0.0220) 
  

 
 

Adjusted R2 0.6115 0.6118 0.7441 

N (rounded) 38000 38000 71000 

Mean net externality -0.3633 -0.4717 -0.6746 

Mean net externality (employment>500) 0.3022 0.2073 0.2213 

Note: Standard errors are shown in parentheses and are clustered by firm (*** p<0.01, ** p<0.05, * 

p<0.10). R&D data come from BRDIS; software data from ACES. The samples exclude firms without 

revenue and firms in intangible-producing industries. Regressions include fixed effects for 6-digit industry 

and year and use sample weights. Rivals’ investment is lagged investment of all other firms in the same 6-

digit industry. The net externality is calculated as 𝜃̂𝑆 ln 𝑆𝑖𝑡−1 + 𝜃̂𝑆𝑅 ln 𝑆𝑖𝑡−1 ∙ ln 𝑅𝑖𝑡  where the bars signify 

sample means. FSRDC Project Number 2735 (CBDRB-FY24-P2735-R11074, CBDRB-FY24-P2735-

R11407). 
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Table 5. Likelihood of investing 

Dependent variable: 1 if invest in year, 0 otherwise  
(1) (2) (3) (4) (5) 

 
R&D R&D Total 

software 

Own 

account 

software 

Purchased 

advertising 

  OLS IV OLS OLS OLS 

Asinh rivals’ investmentt-1 -0.0356*** -0.0653*** -0.0313*** -0.0365**  
 

(0.0127) (0.0134) (0.0053) (0.0166)  

Log sales 0.0959*** 0.0828*** 0.0019 0.0607*** 0.7010*** 
 

(0.0107) (0.0091) (0.0023) (0.0161) (0.0200) 

(Log sales)2     -0.5389*** 

     (0.0212) 

Asinh rivals’ investmentt-1  0.0081*** 0.0137*** 0.0076*** 0.0105***  

    x Log sales (0.0030) (0.0029) (0.0011) (0.0039)  

Firm age -0.0107** -0.0106** -0.0040** -0.0062 0.0243*** 
 

(0.0052) (0.0052) (0.0016) (0.0041) (0.0046) 

No. of industries 0.0106*** 0.0096*** 0.0331*** 0.0644*** 0.0377*** 
 

(0.0028) (0.0028) (0.0027) (0.0055) (0.0019) 

No. of zip codes -0.0069* -0.0054* 0.0317*** 0.0140*** .0039 
 

(0.0036) (0.0033) (0.0036) (0.0025) -- 

Rivals’ patents 0.0102 0.0106 0.0089*** 0.0183**  
 

(0.0102) (0.0102) (0.0026) (0.0072)  
     

 

Mean dep. Variable 

2017/8 

0.027 0.027 0.066 0.008  

Adjusted R2 0.3804 0.3809 0.1075 0.2431 .0722 

N (rounded) 59000 59000 118000 118000 219000 

Note: Standard errors are shown in parentheses and are clustered by firm (*** p<0.01, ** p<0.05, * 

p<0.10). R&D data come from BRDIS; software data from ACES; advertising data from the Census of 

Manufactures. The samples exclude firms without revenue and firms in intangible-producing industries. 

Regressions include fixed effects for 6-digit industry and year. Rivals’ investment is lagged investment of 

all other firms in the same 6-digit industry. FSRDC Project Number 2735 (CBDRB-FY24-P2735-R11074). 
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Table 6. Likelihood of investing, extended variables for manufacturing 

Dependent variable: 1 if invest in year, 0 otherwise 

 (1) (2) (3) (4) 
 

R&D Total software Own account 

software 

Purchased 

advertising 

Log sales 0.2872* 1.046** -0.8183*** 0.3586*** 
 

(0.1675) (0.4895) (0.1177) (0.0488) 

(Log sales)2 -0.0398 -0.5272 1.047*** -0.2378*** 
 

(0.1569) (0.4635) (0.1289) (0.0401) 

Firm age 0.013 -0.0761 -0.021* 0.0501*** 
 

(0.0226) (0.0464) (0.0112) (0.0072) 

No. of industries 0.0186 0.0026 0.0617** 0.0240*** 
 

(0.0162) (0.0298) (0.0259) (0.0033) 

No. of Zip codes 0.0099 -0.0169 0.0555** 0.0032 
 

(0.0133) (0.0189) (0.0264) (0.0028) 

Prof., technical services/ Sales 0.0246** 0.0223** 0.0046 0.2505*** 
 

(0.0115) (0.0101) (0.0084) (0.0662) 

Computer, SW services/ Sales 0.0244 -0.1736* 0.074 0.0332 
 

(0.0248) (0.1001) (0.0691) (0.0253) 

Intermediates / Sales -0.0024 0.0709*** -0.003 0.0007 
 

(0.0087) (0.0245) (0.0085) (0.0021) 

Adv. management practices 0.0847*** 0.0273 0.0075 0.0266*** 
 

(0.0179) (0.0323) (0.0068) (0.0063) 

          

Adjusted R2 0.3698 0.3268 0.2831 0.0769 

N (rounded) 7900 4800 4800 29500 

Note: Standard errors are shown in parentheses and are clustered by firm (*** p<0.01, ** p<0.05, * 

p<0.10). R&D data come from BRDIS; software data from ACES; all other data from the Census of 

Manufactures. The samples exclude firms without revenue and firms in intangible-producing industries. 

Regressions include fixed effects for 6-digit industry and year. Advanced management practices come from 

the MOPS supplemental survey to the 2012 Census of Manufactures. FSRDC Project Number 2735 

(CBDRB-FY24-P2735-R11407). 
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Appendix 

Model 

We wish to solve for the equilibrium value of 

𝑑 ln 𝐼𝑖

𝑑 ln 𝑤
=

𝜕 ln 𝐼𝑖

𝜕 ln 𝑤
+

𝜕 ln 𝐼𝑖

𝜕 ln 𝑆𝑖

𝑑 ln 𝑆𝑖

𝑑 ln 𝑤
. (𝐴1) 

From (3) and assuming 𝑟 = 0, we have 

𝜕 ln 𝐼𝑖

𝜕 ln 𝑤
= −

1

1 − 𝛽
 

𝜕 ln 𝐼𝑖

𝜕 ln 𝑆𝑖
=

𝛼𝑖 − 𝛾𝑖

1 − 𝛽
,    𝛾𝑖 ≡

𝜕 ln 𝛿𝑖

𝜕 ln 𝑆𝑖
. 

Also, for the two-firm case, 

𝑑 ln 𝑆𝑖

𝑑 ln 𝑤
=

𝑑 ln 𝐼𝑗
𝑑 ln 𝑤

. 

Expanding (A1) and assuming a Nash equilibrium so we can substitute in the expression for 

𝑑 ln 𝐼𝑗

𝑑 ln 𝑤
, 

𝑑 ln 𝐼𝑖

𝑑 ln 𝑤
= −

1

1 − 𝛽
+

𝛼𝑖 − 𝛾𝑖

1 − 𝛽
∙

𝑑 ln 𝐼𝑗
𝑑 ln 𝑤

 

= −
1

1 − 𝛽
+

𝛼𝑖 − 𝛾𝑖

1 − 𝛽
(−

1

1 − 𝛽
+

𝛼𝑗 − 𝛾𝑗

1 − 𝛽
∙

𝑑 ln 𝐼𝑖

𝑑 ln 𝑤
). 

Rearranging and simplifying,  

𝑑 ln 𝐼𝑖

𝑑 ln 𝑤
=

𝛾𝑖 − 𝛼𝑖 − (1 − 𝛽)

(1 − 𝛽)2 − (𝛾𝑖 − 𝛼𝑖)(𝛾𝑗 − 𝛼𝑗)
. 

Robustness checks 

Under/over reporting of R&D 

Figure 3 shows striking differences in investment patterns for small firms: for firms 

with about $500k in annual revenue, about half the firms invest in advertising and tangible 

assets, while less than 10% invest in software or R&D. Perhaps small firms have a harder 

time tracking R&D and software investments. On the other hand, perhaps large firms 
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recategorize expenses to exaggerate R&D spending in order to earn bigger tax credits. We 

can check the general validity of our estimates by comparing R&D spending on personnel to 

labor compensation costs of scientists and engineers estimated with data from the Current 

Population Survey. 

First, first we compare R&D personnel costs for 2013, with compensation costs for 

scientists and engineers, calculated as the weighted sum of weekly earnings times average 

weeks worked times 1.2 to cover fringe benefits.23 These two estimates do not measure 

exactly the same thing: the R&D data include personnel who are not scientists and engineers; 

the CPS data include scientists and engineers who work outside of R&D, for example, in 

technical sales or quality assurance. Nevertheless, the two estimates are reassuringly similar: 

$214b from the R&D data, $218b for the CPS data. 

Second, we compare the relative shares of R&D and science/engineering earnings 

across firm size classes. Even though these two estimates measure somewhat different 

things, we would still expect that the relative share of R&D and earnings in each size class 

should be similar. Table A1 shows these shares averaged over the years 2009-2018. 

Table A1. Shares of expenditure by firm employment size 

Firm size (employees) 

Share of Domestic R&D 

Performed by Company 

Share of earnings of scientists 

and engineers 

10-99 7.3% 12.2% 

100-499 8.0% 11.6% 

500-999 4.0% 4.9% 

1000+ 80.8% 71.3% 

Total 100% 100% 

 

These numbers suggest that there might, indeed, be some under-reporting of R&D 

by small firms and/or over-reporting by the largest firms. How significant are these possible 

biases? We can adjust the curve for R&D in Figure 3 to correct for this possible bias by 

multiplying the share of firms reporting R&D investment by the ratio of science/engineering 

earning to R&D expenditures for each size class. That is, assuming that the true share of 

 

23 We exclude civil engineers, actuaries, and software developers. The R&D personnel data come from NSF 
public use files, National Center for Science and Engineering Statistics. 2020. Business Research and 
Development: 2018. NSF 21-312. Alexandria, VA: National Science Foundation. Available at 
https://ncses.nsf.gov/pubs/nsf21312/ and earlier years. 

https://ncses.nsf.gov/pubs/nsf21312/
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R&D performed by firms with 10-99 employees is 12.2%, we multiply the share reporting 

investment by 12.2/7.3. The reported and adjusted shares of firms investing are shown in 

Figure A1. 

Figure A1. Share of firms that reports positive R&D investment by firm real sales 

 

The adjustment for reporting bias does not qualitatively change the import of the figure in a 

significant way.  

A further check comes from time trends. We compare the share of expenditures 

made by small and medium firms (those with fewer than 1000 employees) for R&D and 

scientists/engineers, respectively, and plot them in Figure A2. 

Figure A2. Share of expenditures for firms with <1000 employees 
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While the CPS estimates of science/engineer earnings are higher and more variable than the 

R&D series, the trends are closely matched, suggesting that the time changes we report in 

our data are not substantively affected by changing reporting bias. 

Capitalized vs. Expensed Software 

The US accounting rules for internal use software (GAAP 350-40) divide software 

development spending (own and custom) into three phases corresponding to the life cycle of 

the software: 

1. The exploratory or research phase. This includes expenses on determining the 

needed functionality and exploring the feasibility of the technology. 

2. Application development. Once feasibility is demonstrated, this includes the 

expenses of developing the application, including spending on pre-packaged 

software and on outside contractors. 

3. Maintenance. Once the application is rolled out, this includes further expenses 

for debugging, upgrades, training, etc. 

According to the accounting rules, only the second phase is capitalized; the others are 

expensed. The second phase also represents spending on developing an application that is 

new to the firm, so it can be considered a firm-level innovation that is intended to improve 
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firm performance. And this is the kind of software investment we seek to measure. 

However, software capital expenditure likely understates innovation-related software 

investment for two reasons. First, some amount of research (phase 1) also constitutes 

investment in innovation. Second, firms often do not strictly follow the accounting rules, 

tending to expense software that should be capitalized (Moylan 2001; Grimm, Moulton, and 

Wasshausen 2005; Reed 2015; Barth, Davis, Freeman, et al. 2023, Appendix A). Small 

expenditures also tend to be expensed. Also, a minority of capitalized software consists of 

long-lived prepackaged software that might not represent innovation. However, these 

investments are correlated with own-account capital spending (coefficient .324), so it seems 

likely that much of this investment is also related to new, innovative systems. Nevertheless, 

capitalized software investment provides a measure that closely corresponds to the concept 

we wish to measure, even if it is understated. 

To check the robustness of some of our findings, we can use data on expensed 

software reported in the Information and Communication Technology Supplement to ACES 

which is only available from 2003 to 2013 (excluding 2012). The table below presents some 

statistics comparable to figures in Tables 1-3. Note that these figures are necessarily from an 

earlier time period, so are not directly comparable. 

 

Table A2. Share of investment in total software (capitalized + expensed)  

 Total software (capitalized + expensed) 

 2003 2013 

Top firms, share of investment 56% 55% 

Top firms, share of revenue 31% 23% 

Share of firms with no intangible expenditures 79% 82% 

Share of total sales from firms with no intangible 

expenditures 

20% 22% 

Total real intangible (Bill.) 69.6 117.4 

Top 250 share of increase  53% 

Continuity Percent  50% 

 

Adding expensed software modestly decreases the share of investment by the top 250 firms 

and the share of non-investing firms. Only 53% of the increase in capitalized + expensed 

software is accounted for by the top 250 firms. But the share of firms with no software 
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expenditures increased. The top 250 firms are not as dominant when expensed software is 

included, suggesting that smaller investors tend to expense software relatively more. This is 

in line with our finding that smaller firms tend to invest less in software.  

Alternative measure of rivals’ investment 

As discussed in the text, we also measure rivals’ intangible investment using a 

weighted average (by employment) across different industries. Here we show the investment 

demand and linear probability models equivalent to Tables 4 and 5 using the alternative 

measure of rivals’ investment. 

Table A3. Log investment, alternative rival measure 

 (1) (2) 

 Log R&D Log Total software 

  OLS OLS 

Asinh rivals’ investmentt-1 -0.5701*** -0.6318***  
(0.1427) (0.1434) 

Log sales 0.9593*** 0.6901***  
(0.1661) (0.2251) 

Asinh rivals’ investmentt-1 x Log sales 0.1472*** 0.1800***  
(0.0295) (0.0374) 

Firm age -0.0905*** -0.081**  
(0.0279) (0.0400) 

No. of industries 0.1309*** 0.2495***  
(0.0153) (0.0213) 

No. of zip codes -0.0004 0.1247***  
(0.0239) (0.0152) 

Rivals’ patents 0.0248 0.0131  
(0.0251) (0.0218) 

   

Adjusted R2 0.6144 0.7457 

N (rounded) 34000 71000 

Note: Standard errors are shown in parentheses and are clustered by firm (*** p<0.01, ** p<0.05, * 

p<0.10). R&D data come from BRDIS; software data from ACES. The samples exclude firms without 

revenue and firms in intangible-producing industries. Regressions include fixed effects for 6-digit industry 

and year and use sample weights. FSRDC Project Number 2735 (CBDRB-FY24-P2735-R11074, CBDRB-

FY24-P2735-R11407). 
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Table A4. Likelihood of investing, alternative rival investment 

Dependent variable: 1 if invest in year, 0 otherwise  
(1) (2) (3) 

 
R&D Total software Own account 

software 

  OLS OLS OLS 

Asinh rivals’ investment -0.0013 -0.0305*** -0.0448*** 
 

(0.0152) (0.0092) (0.0158) 

Log sales 0.1091*** -0.0092*** 0.0182  
(0.0198) (0.0036) (0.0217) 

Asinh rivals’ investment x Log sales 0.003 0.0075*** 0.0148*** 
 

(0.0037) (0.0011) (0.0038) 

Firm age -0.0097* -0.0040** -0.0063 
 

(0.0053) (0.0016) (0.0041) 

No. of industries 0.0107*** 0.0325*** 0.0630*** 
 

(0.0029) (0.0028) (0.0055) 

No. of zip codes -0.0088** 0.0317*** 0.0135*** 
 

(0.0038) (0.0036) (0.0025) 

Rivals’ patents 0.011 0.0083*** 0.0175** 
 

(0.0104) (0.0027) (0.0073) 
    

Adjusted R2 0.3659 0.1093 0.2439 

N (rounded) 54000 118000 118000 

Note: Standard errors are shown in parentheses and are clustered by firm (*** p<0.01, ** p<0.05, * 

p<0.10). R&D data come from BRDIS; software data from ACES. The samples exclude firms without 

revenue and firms in intangible-producing industries. Regressions include fixed effects for 6-digit industry 

and year. FSRDC Project Number 2735 (CBDRB-FY24-P2735-R11074). 

Instrumental variable 

One concern with our investment regressions is that technology shocks might be 

correlated with both a firm’s investment and its rivals’ investments, leading to a spurious 

correlation. Since this would be a positive correlation, it would tend to weaken our results, 

that is, the true coefficient on rivals’ investment would be more negative that our estimate. 

Nevertheless, to control for this or related endogenous effects, we lag rivals’ investment and 

we instrument it following Bloom et al. (2013; see also Lucking, Bloom, and Van Reenen 

2019). The instrument we use is the log of the tax term in Jorgensonian R&D user cost as 

developed by Wilson (2009), 

𝜌𝑖𝑡 =
1 − 𝐴𝑠𝑡

𝑐 − 𝐴𝑓𝑡
𝑐 − 𝐴𝑠𝑡

𝑑 − 𝐴𝑓𝑡
𝑑

1 − 𝜏𝑠𝑡
𝑒 − 𝜏𝑓𝑡

𝑒 ,    𝑠 = 𝑠𝑡𝑎𝑡𝑒, 𝑓 = 𝐹𝑒𝑑𝑒𝑟𝑎𝑙 
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where 𝐴𝑐  is the present value of R&D investment tax credits, 𝐴𝑑  is the present value of 

R&D depreciation allowances, and 𝜏𝑒 is the effective tax rate. The Jorgensonian user cost of 

R&D is then 𝜌𝑖𝑡𝑃𝑡
𝑅&𝐷(𝑟𝑡 + 𝛿), where 𝑃𝑡

𝑅&𝐷  is the price of R&D services, 𝑟𝑡 is the interest 

rate, and 𝛿 is the depreciation rate. We use data on state and federal tax credits developed by 

Barth et al. (2023). We find that log R&D tax cost is a reasonably good predictor of R&D so 

the first stage regression is strong: 

Table A5. First Stage IV regression 

  Log R&D 

Log R&D tax cost -1.607*** 

 (0.0851) 

Adjusted R2 0.8775 

N (rounded) 76000 

F Test 356.7 

 Note: Standard errors are shown in parentheses and are clustered by firm (*** p<0.01, ** p<0.05, * 

p<0.10). Regression includes firm fixed effects. This research was performed at a Federal Statistical 

Research Data Center under FSRDC Project Number 2735. (CBDRB-FY24-P2735-R11407).  

 

Following the literature, we use this instrument to predict rivals’ investment and we then use 

these predicted values to calculate 𝑆 in the IV estimates in Tables 4 and 5 of the paper. 

There is a possible bias with this approach however: to the extent that rivals invest in 

the same state as the subject firm, the exclusion restriction might be violated. That is, that 

state’s R&D tax cost would influence both the dependent variable and our predicted 

measure of rival investment. To check the robustness of our IV regression, we first checked 

whether our measure of rival firms’ investment is correlated with the focal firm’s log R&D 

tax cost. If it were not correlated, then rival investment in the same state could not bias our 

estimates. Column 1 in Table A5 shows this regression with industry and year fixed effects. 

The association is statistically and economically insignificant. Next, we explored alternatives 

using a common sample. Column 2 reproduces the same regression as in Table 4 Column 2, 

with a sample that is consistent across all the variations. We then added the log R&D tax 

cost on the right-hand side. The R&D tax cost variable is significant, but it does little to 

change the other coefficients, again implying that rival investment in the same state does not 

bias our estimates. Then, we went a step further and excluded rivals from the same state in 

the construction of the total rivals’ investment. With this change, the coefficient on rivals’ 
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investment was significantly larger. Our basic IV results seem robust to these considerations, 

so we use the same method as in the literature in the main text of the paper. 

Table A6. Alternative instrumental variable estimation 

 (1) (2) (3) (4) 

Dependent variable 

Asinh 

rivals’ 

investment Log R&D Log R&D Log R&D 

Log R&D tax cost 0.023    

 (0.086)    

Asinh rivals’ investmentt-1  -0.984*** -0.983*** -1.275***  

 (0.152) (0.152) (0.191) 

Log sales  1.110*** 1.109*** 1.149***  

 (0.122) (0.121) (0.113) 

Asinh rivals’ investmentt-1 x Log sales  0.142*** 0.142*** 0.185***  

 (0.027) (0.027) (0.035) 

     

Adjusted R2 0.871 0.618 0.619 0.619 

N (rounded) 34000 32000 32000 32000 

Note: Standard errors are shown in parentheses and are clustered by firm (*** p<0.01, ** p<0.05, * 

p<0.10). R&D data come from BRDIS. The samples exclude firms without revenue and firms in intangible-

producing industries. Regressions include controls for firm age, no. of industries, no. of zip codes, rival 

firm patents, and fixed effects for 6-digit industry and year and use sample weights. Column 2 uses the 

same IV as in Table 4, col. 2, column 3 adds a control for log R&D tax cost (not shown), and column 4 

calculates rivals’ investment excluding firms in the same state as the focal firm. Rivals’ investment is 

lagged investment of all other firms in the same 6-digit industry. FSRDC Project Number 2735 (CBDRB-

FY24-P2735-R11074, CBDRB-FY24-P2735-R11407, CBDRB-FY24-P2735-R11770). 

 

Alternative measures of firm size 

The model suggests that obsolescence risk and spillover efficiency might vary with 

firm size for a variety of reasons. To measure firm size, our main analysis uses firm revenue 

from LBD-rev. There are two potential problems with this. First, LBD-rev, which obtains 

revenue data from tax records, does not have matched revenue data for all firms because of 

specific features of the tax system. Consequently, some firms are excluded from the analysis 

when we use these revenue data, possibly giving rise to sample selection bias. Second, it is 

not clear whether domestic or worldwide sales provide the more relevant measure. In theory, 

we are seeking a measure of the customer base that might be affected by a rival’s innovation. 

Rivals might or might not compete with the subject firm’s overseas subsidiaries. Moreover, 

LBD-rev obtains revenue from US tax forms, but these might not include revenue from 



 49 

unconsolidated foreign subsidiaries. Fortunately, BRDIS provides its own measures of 

domestic and worldwide sales, so we can test alternatives. These measures are self-reported, 

so the revenue concept used is not entirely clear. These variables are also missing for some 

observations, however, the missing values appear to be independent of the unmatched 

values in LBD-rev. Table A6 shows the same regression as in Table 4, column 1 using firm 

size measured with LBD-rev, as in the original, firm size measured with BRDIS domestic 

sales for all firms in BRDIS with non-missing values, and firm size measured with BRDIS 

worldwide sales. The measure of firm size does not appear to make much difference to our 

results, although domestic sales appear to have slightly greater explanatory than self-reported 

worldwide sales.  

Table A7. Log R&D regression with different firm size measures 

Dependent variable: Log R&D 
 

(1) (2) (3) 

Sales measures: Domestic sales from 

BRDIS, LBDrev not 

missing 

Domestic sales 

from BRDIS 

Worldwide 

sales from 

BRDIS 

Asinh rivals’ investmentt-1 -0.896*** -0.841*** -0.984*** 
 

(0.147) (0.145) (0.137) 

Log sales 1.130*** 1.154*** 0.520*** 
 

(0.109) (0.107) (0.110) 

Asinh rivals’ investmentt-1 x Log sales 0.177*** 0.166*** 0.213*** 
 

(0.028) (0.028) (0.028) 
 

   

Adjusted R2 0.608 0.606 0.595 

N (rounded) 37000 38000 30000 

Mean net externality -0.415 -0.382 -0.316 

Mean net externality (employment>500) 0.373 0.354 0.425 

Note: Standard errors are shown in parentheses and are clustered by firm (*** p<0.01, ** p<0.05, * 

p<0.10). R&D data come from BRDIS. The samples exclude firms without revenue and firms in intangible-

producing industries. Regressions include controls for firm age, no. of industries, no. of zip codes, rival 

firm patents, and fixed effects for 6-digit industry and year and use sample weights. Rivals’ investment is 

lagged investment of all other firms in the same 6-digit industry. The net externality is calculated as 

𝜃̂𝑆 ln 𝑆𝑖𝑡−1 + 𝜃̂𝑆𝑅 ln 𝑆𝑖𝑡−1 ∙ ln 𝑅𝑖𝑡  where the bars signify sample means. FSRDC Project Number 2735 

(CBDRB-FY24-P2735-R11074, CBDRB-FY24-P2735-R11407, CBDRB-FY24-P2735-R11770). 
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Sample selection of lagged measures 

Our sample is not a full panel, but we use lagged rivals’ investment as a key right-

hand variable. This means that the regression sample differs from the original sample, 

possibly creating a bias. To test for the significance of this, we correct for sample selection 

by using inverse propensity weights—we divide the original sample weights by the 

probability that a randomly selected firm from the same industry will be in the regression 

sample. We estimate this probability simply as the industry mean probability of selection. 

Table A7 repeats two regressions from Table 4 both with the original sample weights and 

the inverse propensity weights. Not surprisingly, because the original sample has relatively 

more small firms than the regression sample, the negative externality effects are larger. 

Table A8. Log investment with inverse propensity weights 

 (1) (2) 

Dependent variable Log R&D Log Total software 

  OLS OLS 

Asinh rivals’ investmentt-1 -0.921*** -0.752***  

(0.142) (0.280) 

Log sales 1.064*** 0.983***  

(0.105) (0.242) 

Asinh rivals’ investmentt-1 x Log sales 0.175*** 0.170***  

(0.026) (0.053) 

   

Adjusted R2 0.598 0.701 

Mean net externality -0.460 -1.050 

Mean net externality (employment>500) 0.324 0.219 

Note: Inverse propensity weights. Standard errors are shown in parentheses and are clustered by firm (*** 

p<0.01, ** p<0.05, * p<0.10). R&D data come from BRDIS; software data from ACES. The samples 

exclude firms without revenue and firms in intangible-producing industries. Regressions include controls 

for firm age, no. of industries, no. of zip codes, rival firm patents, and fixed effects for 6-digit industry and 

year. Rivals’ investment is lagged investment of all other firms in the same 6-digit industry. The net 

externality is calculated as 𝜃̂𝑆 ln 𝑆𝑖𝑡−1 + 𝜃̂𝑆𝑅 ln 𝑆𝑖𝑡−1 ∙ ln 𝑅𝑖𝑡 where the bars signify sample means. FSRDC 

Project Number 2735 (CBDRB-FY24-P2735-R11074, CBDRB-FY24-P2735-R11407, CBDRB-FY24-

P2735-R11770). 
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Additional Summary Statistics 

Table A9. Unstandardized Means and Standard Deviations for RHS Variables  
($1000, base year=2009) 

 (1) (2) (3) (4) 

 R&D (BRDIS) Software (ACES) 

  Mean SD Mean  SD 

Rivals’ investment 1,570,000 4,835,000 295,700 816,200 

Revenue 855,300 6,004,000 336,100 3,483,000 

Firm age 27.21 11.29 22 13.39 

No. of industries 2.853 4.965 1.913 3.072 

No. of Zip codes 20.88 172.3 16.77 143.6 

No. of rivals’ patents 821.5 2554 226.2 913.3 

Note: Corresponds to Tables 4 and 5, but the regressions use standardized variables (divided by the 

standard deviation). Statistics use sample weights. This research was performed at a Federal Statistical 

Research Data Center under FSRDC Project Number 2735. (CBDRB-FY24-P2735-R11407). 
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