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Abstract: Solow (1957) decomposed labor productivity growth into two
components that are independent under Hicks neutrality: input growth and the
residual, representing technical change. However, when technical change is Hicks
biased, input growth is no longer independent of technical change, leading to
ambiguous interpretation. Using Solow’s model, I decompose output per worker
into globally independent sources and show that technical bias directly contributes
to labor productivity growth above what is captured in the Solow residual. This
contribution is sometimes large, generating rates of total technical change that
substantially exceed the Solow residual, prompting a reinterpretation of some
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Biased Technical Change - 2

Introduction

During 1842, the cotton mills of Lowell, Massachusetts increased the number of looms assigned
to each weaver from two to three, increasing labor productivity by about 50% in short order. How
much of this increase can be attributed to technical change and how much to capital-labor substitution?
This pattern of labor productivity growth accompanied by capital deepening appears frequently in
economic development. The decomposition of labor productivity growth into sources helps us interpret
the relative importance of technological change, which should generate technical change, and of capital
accumulation, which should induce a substitution of capital for labor.

Solow (1957) provided a simple model that does such a decomposition. The famous Solow
residual measures the component that corresponds to technical change and this decomposition has been
widely used to answer questions of this sort. However, when applied to this change in Lowell, the
Solow decomposition seems to provide a misleading result. The Solow decomposition attributes just
over half of the increase in labor productivity to the residual and about half to “input growth,” referring
to the growth in the capital to labor ratio. This suggests that technical change and capital accumulation
played roughly equal roles. But a detailed examination of the actual changes (Bessen 2008) shows that
capital-labor substitution can only account for a small percentage of the labor productivity growth.
How could this be?

The reason for this discrepancy is that the technical change in Lowell was strongly biased and the
Solow residual can be easily misinterpreted in this case. In his 1957 paper, Solow assumed that
technical change was Hicks neutral.! Solow provided some limited empirical evidence to support his

assumption, however, subsequent empirical research tends to reject the hypothesis of Hicks neutrality.>

1 Solow (1957, p. 313) writes “The not-necessarily-neutral case is a bit more complicated, but basically similar.”
However, he provides no details.

2 Solow found no correlation between the annual growth of the residual and the annual capital-labor ratio. However, if
learning is involved, then annual differences are unlikely to show such a correlation and might even show a negative

P
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The literature seems confused as to whether the Solow residual is an appropriate and meaningful
measure of technical change when technical change is not Hicks neutral. Some early theoretical
treatments identified the Solow residual as a measure of technical change even in the non-neutral case
(Ferguson 1968, Sato 1970). More recently, several authors have proposed alternative measures that are
supposed to provide more appropriate decompositions (Antonelli and Quartraro 2008, Bailey et al.
2004, Nelson and Pack 1999, Rodrik 1997).

Mankiw, Romer and Weil (1992) take another approach to measure the relative contributions of
technical change and capital accumulation. They use an alternative model that assumes that technical
change is Harrod neutral (purely labor-augmenting) instead of Hicks neutral. Klenow and Rodriguez-
Clare (1997) and Hall and Jones (1999) also used this assumption to obtain non-parametric estimates of
the contribution of technical change. This approach is consistent with neoclassical growth theory
(Solow 1956, Swan 1956), which often assumes Harrod neutrality in order to get models to converge to
a steady state. Although the empirical evidence tends to reject Hicks neutrality, it also does not tend to
support Harrod neutrality. There clearly might be some advantage to obtaining a measure of
productivity growth that does not require a particular assumption about the bias of technical change.

More generally, this affects how growth is interpreted. Reviewing the history of U.S. economic
growth, Abramovitz and David (Abramovitz 1993, Abramovitz and David 1973, 2001), argue that it is
misleading to interpret the Solow residual as the only measure of technical change because of evidence
that labor-saving/capital-using technical change promoted substantial capital-deepening. Nevertheless,

Abramovitz and David interpret nineteenth century growth in labor productivity as arising primarily

correlation. Empirical studies that formally test and reject the hypothesis of Hicks neutrality include Antras (2004),
Berndt and Khaled (1979), Binswanger (1974), Brown and De Cani (1963), Cain and Paterson (1981), David and van de
Klundert (1965), Ferguson (1965), Jorgenson and Fraumeni (1981), Kalt (1978), Klump et al. (2007). May and Denny
(1979), Moroney and Trapani (1981), Panik (1976), Sato (1970), Wilkinson (1968), Wills (1979) and Yuhn (1991).
Berndt and Wood (1982) could not discriminate between different technical biases. Toevs (1980) could not reject the
Hicks neutral hypothesis against a restricted alternative. Berndt et al. (1993) reject Harrod neutrality, but could not reject
Hicks neutral technical change.
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from capital accumulation. Similarly, Young (1995) and Kim and Lau (1994), use the Solow residual to
argue that the dramatic growth of labor productivity in East Asia owes more to capital accumulation
than to technical change. This leads Krugman (1994) to call the East Asian miracle a “myth” that he
compares to Soviet investment-driven economic growth. Rodrik (1997) and Nelson and Pack (1999)
challenge this view, arguing that it is based on an inappropriate measurement because technical change
is biased.

These differences hinge on how one interprets the “input growth” term that comes out of the
Solow decomposition relative to the residual term. Some observers interpret input growth as driven
strictly by capital accumulation: as in neoclassical growth models, a high savings rate raises the relative
wage of labor compared to capital, causing firms to substitute labor for capital, raising the amount of
capital per worker. This movement along the production function raises output per worker. In this view,
input growth is independent of technical change. However, this interpretation is based on inferences
that cannot be supported in many cases, as I show below. If technical change is biased, then input
growth is not independent of technical change and is not driven purely by capital accumulation.

In this paper, I argue that this confusion arises from a muddling of what is exogenous and what is
endogenous in Solow’s model. A growth decomposition exercise cannot unambiguously determine
how much growth (e.g., in labor productivity) comes from any one component (e.g., technical change)
unless the components of that growth are orthogonal exogenous variables. For example, if one
decomposes inflation growth into a contribution from oil prices and another contribution from
transportation prices, the real contribution from oil prices will be understated because these two factors
are not independent. Surprisingly, Solow’s decomposition is not orthogonal when technical change is
biased.

In Solow’s model, the firm (or production sector at the aggregate level) maximizes profits by

adjusting the capital-labor ratio subject to two exogenous variables: relative factor prices and technical
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change. Solow decomposes labor productivity growth into two components, one representing technical
change, the other representing capital deepening. When technical change is Hicks neutral, these two
components are orthogonal and each corresponds to one of the exogenous variables (the residual
corresponds to technical change and capital-deepening corresponds to changes in factor prices).
However, when technical change is Hicks biased, I show that these components are no longer
orthogonal according to the assumptions of Solow’s model. In particular, the capital-labor ratio is an
endogenous function of technical change as well as factor prices. This means that some input growth
can be attributed to technical change and not to capital accumulation. Consequently, the Solow residual
cannot be unambiguously interpreted as a complete measure of technical change in this case.

Of course, productivity economists have not ignored technical bias. The econometric studies
listed in footnote 2 obviously accommodate biased technical change. Several other papers use non-
parametric methods that accommodate a limited degree of technical bias. Caves et al. (1982), Diewert
and Morrison (1986) and Kohli (1990) develop index number measures of productivity that are exact
for translog production functions that permit some technical bias.’ But my point here concerns the
interpretation of the Solow residual. The interpretation is compromised when technical change is
biased. It is inconsistent to assume that the level of technology influences the quantities of factor inputs
and then to attempt to measure technical change holding factor inputs constant, as if this could be done.
The Solow residual simply fails to capture the entire effect of technical change on labor productivity
growth because it fails to capture the direct effect of technical change on factor proportions.

Fortunately, I show that this problem can be solved with a simple adjustment to the Solow
residual. Where Solow took a partial derivative, I take a total derivative. With just this single additional

step of analysis, Solow’s model provides a decomposition into components that are orthogonal even

3 Thanks to Erwin Diewert for pointing me to this literature. The first order parameters of these translog functions are
permitted to change over time, allowing for some bias in technical change. However, the second order parameters are
fixed. This means, for example, that these production functions cannot accommodate factor augmenting technical
change that is biased.
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when technical change is biased. There are three terms contributing to labor productivity growth:
“neutral” technical change (the Solow residual), “biased” technical change, and factor substitution.

With this decomposition, it is straightforward to calculate both the magnitude of the technical
bias and a generalized measure of technical change that is unambiguously distinguished from the effect
of price-driven changes in input factors. Because the total rate of technical change includes both the
neutral Solow residual plus a term associated with the technical bias, the total rate of technical change
generally differs from the Solow residual.

This generalized residual provides a more meaningful measure of technical change when that
change is biased. For example, the change at Lowell in 1842 was hardly a story of capital
accumulation. Relative factor prices had not changed much at that time, there was little factor
substitution (the production function for weaving was highly inelastic) and the capital-labor ratio
increased not because of greater investment (capital accumulation), but because the mills used the same
machines with less labor, thanks to better technical knowledge and skills (Bessen 2008). Consistent
with these facts, the generalized residual attributes almost all of the growth in labor productivity to
technical change and very little to factor substitution.

Of course, one might dispute the assumptions of the Solow model, for example, the assumption
that technical change is exogenous. Nelson (1973) raises this point. Indeed, if technical change is
endogenous it might well be influenced by relative factor prices in the long run. Below I show that my

generalized residual is also consistent with a wide range of endogenous growth models.

Solow’s Model Restated

Decomposing labor productivity growth

Solow’s model assumes a neoclassical production function with constant returns to scale, profit
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maximization in competitive factor markets (factors are paid their marginal product) and Hicks neutral
technical change.* The production function could pertain to an individual firm or it could be an
aggregate production function.’ I begin by restating the model without the assumption of Hicks
neutrality.

For the moment, assume a two-factor neoclassical production function (with all the usual

assumptions) that is linear homogenous in K and L, capital and labor:

D y=FK, L; Aw)

where Y is output and A is an index of technology (broadly construed to include organization and
technical knowledge), which is an exogenous function of time, . Below I will consider more than two
input factors, but two factors make the exposition simpler and this also more closely matches Solow’s
exposition.

Given the constant returns to scale, this can also be expressed in intensive form,

Y K
@ y= = fl Ay k=

where y represents labor productivity and k is the capital-labor ratio. Given this, the instantaneous

growth in labor productivity can be written (not showing function arguments)

dinf fi dk fu dA

dt_fdt+f dt

3 =

where a “hat” represents the instantaneous growth rate and subscripts denote partial derivatives.

Let

wk

4 Hicks (1932, p. 121) classified technical change depending on whether the initial effect was “to increase, leave
unchanged, or diminish the ratio of the marginal product of capital to that of labour.” Hicks neutral change leaves this
ratio unchanged. Under constant returns to scale, this also means that factor proportions remain unchanged.

5 Felipe and McCombie (2006) raise concerns about growth accounting using aggregate production functions that are
separate from the analysis here.
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where w is the ratio of the labor wage, w, to the capital rental rate, wX. The model assumes that firms
maximize profits by adjusting the capital-labor ratio instantaneously. That is, w and A change over time
and both are exogenous to the profit maximization problem of the firm. The profit-maximizing capital-

labor ratio is a function of these exogenous variables:

(4) k*(W(I), A(I)) =k such that ﬂ — W(f)
Fk

Given this assumption, equation (3) can be re-written

dink  fa dA oy K FKK

5 &=
) R TR T f F

where s is the output share of capital. Solow identified the first term as the increase in labor
productivity growth that can be associated with growth in the capital-labor ratio and the second term
with technical change. Accordingly, he defined the following residual as a measure of technical

change:

© Rt = 3 - sk

However, note that the first term on the right hand side of (5) is endogenous: k* is a function of
both w and A. Consequently, the Solow residual does not decompose labor productivity growth into
independent sources. As we shall see, it does do this under the assumption of Hicks neutrality, which
is, after all, the condition that Solow imposed. However, in the general case, when technical change
might be biased, the two terms on the right hand side of (5) are not independent.

Fortunately, (5) can be further decomposed by expanding the total derivative of k*:

ok dw oOlnk* dA\ fi dA
s . | fa 44
ow di ~ 0A di)t 5 di

=50 +5 T

dt oA dt T f di

omk . onf olnk*
olnA oA ‘" 7= omw
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where o is the elasticity of substitution. This decomposes labor productivity growth into orthogonal
terms based on exogenous variables. The first term varies with growth in w; the last two terms vary
with growth in A. The first term captures the effect of price-driven factor substitution on labor
productivity, the second term captures the effect of technical change-driven capital deepening and the
third term, which is the Solow residual, can be thought of as the neutral component of technical change.
The second term is, in fact, directly related to the technical bias. This can be seen as follows. In

my notation, the Hicks bias can be defined as (see, for example, Ferguson 1968)

onFy/Fy 4

B oA

Technical change is Hicks labor-saving, Hicks neutral, or Hicks capital saving depending on whether

the bias is positive, zero or negative. Then it can be shown (see Appendix) that (7) becomes

omnf .
oA 2

(8) 37=S0'\7V+SO'B+

Two intuitions follow from (7) and (8). First, technical bias itself contributes to labor
productivity growth. Part of the change in input factors has nothing to do with factor accumulation,
arising, instead, from technical bias. Second, the Solow residual, which equals the last term, does not
capture the entire effect of technical change on labor productivity growth when the bias is non-zero. It
is therefore misleading to interpret the Solow residual as the rate of technical change except under
Hicks neutrality.

Given this decomposition, a generalized residual can be constructed as

A

©) R=Yy-sow
This measure captures the entire effect of technical change independently of the effect of price-driven
factor accumulation.

The Solow residual is sometimes described as the difference between output growth and growth
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in a Divisia (share-weighted) index of input quantities (see equation 6). In comparison, (9) appears as
the difference between output per capita growth and a share-and-elasticity-of-substitution weighted
index of factor prices. In effect, this is a weighted index of input factors, adjusted to include only the

effects of factor prices, not the effects of technical bias.

Calculating technical bias and the generalized residual

This generalized residual and the technical bias can be calculated using the Solow residual.
However, these calculations require two quantities not included in the normal growth accounting: the
elasticity of substitution and the rate of growth of relative prices. The latter can, however, be obtained

from quantities used in the normal growth accounting. Given constant returns to scale,

1-s Lwt w

s KwKk  k
Taking the derivative of this equation with respect to ¢ and using straightforward calculation, (9) can

then be rewritten

W e rlf

This does still require estimation of the elasticity of substitution and, as Diamond et al. (1978)
emphasize, when technical change is biased, this might require the imposition of some assumptions.
Nevertheless, beginning with David and van de Klundert (1965), an empirical literature has derived
estimates of the elasticity of substitution of aggregate production functions under assumptions of biased
technical change at a constant rate of growth. Also, engineering production function studies have
obtained bottoms-up estimates of the elasticity for specific technologies (see Wibe, 1984, for a review).
In any case, even if estimates of the elasticity of substitution are not available, this equation provides a
framework for assessing the sensitivity of technical change estimates variation in the elasticity of

substitution.



Biased Technical Change - 11
Comparing (10) and (6), the generalized residual can be calculated as an adjustment to the Solow

residual:

A A SO
(1) R = Rspiow + S0 B = Rsoiow + s(1—0) k™ + 1 SS

Note that if factor shares are constant—as is assumed in many studies and is found in other many
studies as a first order approximation—then the last term drops out. Also, if the production function is
Cobb-Douglas (elasticity of substitution equal to one), then the last two terms drop out and the
generalized residual equals the Solow residual.

Finally, the technical bias can be calculated as

12 j- R-Rsotow _ 1-0 P §
so o 1-s

Interpreting technical change

The Hicks Neutral Case

When technical change is Hicks neutral, Solow’s residual corresponds to the rate of technical
change. It is well-known (Uzawa 1961, p. 120) that if technical change is Hicks neutral, the production
function can be separated as

(13) FK,L; A@) = A G(K, L)

Inspecting (4), this means that k* will be independent of A, that is, k*(w, A) = k*(w) in this case. Given
this independence, the second term in (7) will drop out, leaving the Solow residual equal to the
generalized residual. More generally, by inspecting (12), since s and o are strictly positive, it follows

that
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Proposition 1. Technical bias.
a) If B>0 (Hicks labor-saving bias), R > Rsion-
b.) If B=0 (Hicks neutral change), R = Rsoioy-

c.)If B<0 (Hicks capital-saving bias), R < Rso/on-

Given that k* is independent of A in the Hicks neutral case, there is a one-to-one correspondence
between w and k. That is, & is an alternative exogenous variable. Consequently it is appropriate that
some people describe technical change as the increase in labor productivity that could be achieved
while holding k fixed. This is an appropriate description under Hicks neutrality, but since k is
endogenous in the more general case, this description is only apt in the Hicks neutral case.

Over discrete time intervals, the Solow residual can be approximated by a Tornqvist index. The

change in log labor productivity from =0 to t=1 can be obtained by integrating (5),

dink* L £, dA

1
(14) Alny = fS d dt+ TZJI.
0 0

Using the trapezoidal rule to approximate the first integral,

1
Ay ~s Ak [ 22 A 4 5 2 SO A +sr(D, AD)
0 f dt 2

so that

(15) Rsoiow ~ Alny — 5 Alnk

An example of such a change is illustrated in Figure 1. The solid curve represents the initial production
function and at =0 production takes place at point A. The dashed curve represents the production
function at #=1.° In this example, w(1) > w(0), so production at =1 takes place at point B, with a higher
k* as well as a more productive technology.

Solow described the decomposition in his model as a distinction between “movements along the

6 The functions, G, shown are CES functions with an elasticity of substitution of .10. Technical change increases A by
about 50% and price changes increase k also by 50%.
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production function” and “shifts of the production function.” This interpretation holds in the Hicks
neutral case. In Figure 1, the dashed curve appears as just a vertical displacement of the solid curve.
Because technical change is multiplicative in (13), it appears as a vertical shift of the production
function when displayed on a logarithmic scale. That the second term in (15) is equivalent to a

movement along the production function can be seen from the following:

Proposition 2. When technical change is Hicks neutral,
(16a) SW(®), A0) = s(w(®), A1) | and,

(16b)  Re o = Alny — fl dn f(k, A(0)) dInk s(w(0), A(0)) +s(w(1), A(0)) Ak

, dink gp 41~ Ay - 2

Proof: Under Hicks neutral change, the output share of capital is independent of A. This can be
seen as follows. By definition, Hicks neutral change leaves the ratio of the marginal products of capital
to labor unchanged, hence at constant factor prices it leaves the capital labor ratio unchanged, so the
ratio of the capital share of output to the labor share of output is unchanged. Under constant returns to
scale, this ratio is s/(1-s). If this is constant, it must be true that s is also unchanged as in (16a).

Substituting s(w(z), A(0)) for s(w(z), A(?)) in (15) yields (16b). QED.

The second term on the right hand side of the expression in (16b) represents the change in In y

brought about by movement from point A in Figure 1 to point C along the original production function.

This is represented by segment CD. Segment BD represents A In y, leaving the residual represented by
segment BC. Solow’s description of the residual as measuring shifts in the production function as

distinct from movements along the production function holds in the Hicks neutral case. However, this
description and Proposition 2 do not hold in general because in general neither k nor s are independent

of A.
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The Hicks Biased Case

Figure 2 shows a different technical change without any change in relative factor prices. The
solid line is the same production function as in Figure 1. However, the dashed curve now represents
this production function after a labor-augmenting technical change.” As can be seen, technical change
can no longer be described as a simple “shift” in the production function; the multiplicative property of
(12) no longer holds.

Nor is there a comparable “movement along the production function” in this case, since relative
factor prices remain unchanged by assumption. That is, w(0) = w(1) and point B has the same relative
factor prices as does point A. There can be no movement induced by changing prices. The first term in
(7) is zero and the generalized residual captures the entire increase in labor productivity represented by
segment BD.

Of course, one might imagine a counterfactual hypothetical where relative prices increased prior
to the technical change so that production would move from point A to point C. The idea would be that
one might hope to then measure the increase in labor productivity from point C to point B, holding k&
constant. The problem with this, of course, is that now k is endogenous and it cannot be held constant
while A changes in a Hicks biased manner. The only way to get from point C to point B is if the
technical change were accompanied by a decrease in factor prices that restores them to their original
level. It is not clear that such a change, if it could be measured, would reveal anything meaningful
about the contribution of technical change.

But even if we wanted to measure the change from C to B, the Solow residual does not do this
any longer. Instead, it measures the change from point E to point B. This is because now the capital

share of output at point C no longer equals the capital share of output at point B,

s(w(1), A(0)) #s(w(l), A(1)), so (15) no longer yields the same expression as (16b). This example is an

7 Labor was augmented 50%.
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instance of a well-known property of the Solow residual when technical change is not Hicks neutral.®

Several researchers have noted that the Solow residual does not take account of the effect of
technical change on factor shares (Antonelli and Quartraro 2008, Bailey et al. 2004, Nelson and Pack
1999, Rodrik 1997). These researchers’ have proposed an alternative index that uses only the initial
factor share:

¥ = sw(0), AO) K
In Figure 2 the corresponding residual is represented by the segment BF. This provides a small
improvement over the Solow residual, but fails to capture the full segment BC, let alone BD. The
reason for this is that s(w(0), A(0)) # s(w(1), A(0)). In general, researchers cannot easily measure
s(w(1), A(0)) because production does not take place at point C—this point, after all, is only significant
for a counterfactual hypothetical that has little relevance for interpreting actual technical change.

In short, when technical change is Hicks biased, the Solow residual no longer provides a
meaningful measure of the portion of labor productivity growth that can be attributed to technical
change, nor do the proposed alternative measures. The problem with these measures is that & is no
longer exogenous in the Solow model, so the effects of technical change and capital accumulation are
muddled. But w is exogenous and, for this reason, the generalized residual can cleanly distinguish the
effects of technical change from capital accumulation mediated by factor prices changes, at least as far
as the assumptions of Solow’s model go.

The bottom line is that the change depicted in Figure 2 can be attributed entirely to technical
change: factor prices remained unchanged and so factor substitution cannot realistically account for any

of the growth in labor productivity in this example. A further increase in the relative wage, as in Figure

8 The first integral in (14) is equivalent to a Divisia index of inputs. When technical change is Hicks neutral, this integral
can be evaluated independently of the path of A(f) (see for example, Hillinger 1970). However, when technical change is
biased, this line integral depends on the path of technical change because both s and k* vary with A. See Hulten (1973)
and Samuelson and Swamy (1974, p. 578-88).

9 Bailey et al. (2004) use an econometric approach as an alternative.
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1, would move point B further along the dashed line representing the production function at time 2.
As a practical matter, the generalized residual over a discrete interval can be approximated in the

same manner as the Solow residual, above,

sw(0), A(0)) o (w(0), A(0)) +s(w(1), A(1)) o(w(D), A(1))
2

R~ Alny — § Alhw, 3=

A similar approximation can be applied to (11).

Reinterpreting Multi-factor Productivity Estimates

How does this new residual measure compare to the Solow residual in practice? In Tables 1
through 3, I explore the impact of this alternative decomposition on a variety of multi-factor
productivity estimates from the literature. In these calculations, I use (11) to obtain the generalized
residual. This still requires an estimate of the elasticity of substitution, so I use examples where that

elasticity has been estimated or where I can impose a hypothetical value.

Nineteenth Century Estimates

Table 1 compares calculations of these two decompositions for the nineteenth century. The first
calculations return to the example of the 19" century cotton mills of Lowell. Using an engineering
production function I previously obtained an estimate of the elasticity of substitution of 0.14 (Bessen
2008). This value is low, however, it is supported by similar estimates obtained econometrically for the
same mill and from the cotton textile industry as a whole (Asher 1972). In this example, the
generalized residual is dramatically greater than the Solow residual. In the generalized decomposition,
only a small part of the growth in labor productivity can be attributed to factor substitution. Technical
change accounts for almost all of the growth in labor productivity, in accord with my detailed analysis
of changes at that mill.

This example may be atypical. Mechanized technologies might be particularly biased towards
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labor-saving innovation and there is reason to expect that the elasticities of substitution for these
technologies are low. My analysis of the 19" century cotton industry provides a rationale for these
differences. More generally, Abramovitz and David (Abramovitz 1993, Abramovitz and David 1973,
2001) suggest that technical change might have been particularly biased during the 19" century, noting
the larger role of capital deepening then compared to the 20™ century.

However, Abramovitz and David, using a Solow decomposition, nevertheless conclude that, “the
pace of increase of the real gross domestic product was accounted for largely by that of the traditional,
conventionally defined factors of production.” They suggest that biased technical change kept the
returns to capital from decreasing much as a high savings rate increased capital intensity and they
criticize earlier economic historians who placed greater emphasis on technical change. Abramovitz and
David’s estimate (2001) of the Solow residual for the period from 1855 through 1890 is only 0.37% per
year, while output per manhour grew at 1.06% per year. The remainder they attribute to the growth of
conventionally defined factors of production, a contribution of 0.69% per year. Thus one might be
tempted to conclude that growth in labor productivity was largely driven by growth in capital intensity
that was itself driven by a high savings rate.

However, given that Abramovitz and David conclude that technical change was significantly
biased during this period, perhaps an alternative calculation might present a somewhat different picture.
This, however, requires an estimate of the elasticity of substitution between capital and labor.
Abramovitz and David conclude that the aggregate elasticity of substitution between capital and labor
is likely less than unity, but they do not provide an estimate. The modern empirical literature presents a
range of estimates, however, it is important to recall that the results depend on the assumptions one
makes regarding the bias of technical change (Diamond et al. 1978). Under assumptions of Hicks
neutrality and constant elasticity of substitution, Berndt (1976) found an elasticity of substitution of

about one between capital and labor. But estimates using translog production functions, which allow
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variable elasticities of substitution, typically reject the Cobb-Douglas restrictions (see for example
Berndt and Christensen 1973 or Griffin and Gregory 1976). And estimates that assume a constant
elasticity of substitution but allow factor-augmenting technical change also reject the Cobb-Douglas
form, finding elasticities of substitution between capital and labor well below one (David and van de
Klundert 1965 and Antras 2004). Antras performs a careful analysis that takes account of a wide
variety of possible econometric issues. He finds that allowing for biased technical changes makes a
critical difference and concludes that “the elasticity of substitution between capital and labor is likely to
be considerably below one, and may even be lower than 0.5.” Klump et al. (2007) obtain an elasticity
of 0.55.

Supposing that the elasticity of substitution between capital and labor is 0.50, I calculate the
alternative decomposition in Table 1. Under this assumption, technical change accounts for growth in
output per manhour of 0.72% during this period, substantially larger than the contribution from
conventional factor inputs and a majority of the total growth in labor productivity. A similar reversal
occurs in the estimates for the earlier period from 1800 through 1855. Moreover, although 0.72% is a
low rate of technical change by modern standards, this is not really so low considering that the Civil
War occurred during this period. Field (2008) shows the large effect of the war on productivity over
this interval and finds high rates of residual growth from the 1870s on.

This analysis suggests that the Solow decomposition might understate the significance of

technical change for labor productivity growth both at the micro and macro levels.

Twentieth Century US Estimates

Table 2 shows two sets of well-known estimates reinterpreted using my decomposition. David
and Van de Klundert (1965) estimated the elasticity of substitution in a model that also allowed biased

technical change. The value they obtained was 0.3165. Table 2 shows the calculated residuals for their
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data (using two alternative estimates of capital shares that they use), which run from 1899 through
1960. Here the difference between the residuals is not large, although the generalized residual is still
larger, consistent with their finding of a labor-saving bias.

Christensen and Jorgenson (1970) perform a non-parametric calculation of the Solow residual for
the US private domestic economy from 1929 through 1967. Several previous studies had found that the
Solow residual accounted for most of the growth in output and in output per manhour. Christensen and
Jorgenson (see also Jorgenson and Griliches 1967) questioned whether those findings resulted from
measurement error and, in their 1970 paper, sought to provide a more robust estimate. Their estimate of
the Solow residual was 1.13% per annum, about one third of the rate of growth of GDP and about two
thirds of the rate of growth of GDP per manhour.

Christensen and Jorgenson also obtained a rough estimate of the elasticity of substitution between
capital and labor of 0.79."° Using this figure, I find that my alternative decomposition leaves the
residual almost unchanged.

Thus although the role of technical bias seems to suggest a reinterpretation of nineteenth century
productivity growth in the US, it does not seem to make much difference for twentieth century

estimates.

World estimates

The same is not true for developing countries in the twentieth century, however. Table 3 shows
growth accounting for regions of the world from 1960 through 2000 based on data from Bosworth and
Collins (2003). The Solow decomposition shows the data supporting the view that the East Asian

productivity miracle is a “myth.” East Asia has a Solow residual of 1.0%—an average value—but a

10 They obtained this as the ratio of the average rate of growth of capital per unit labor to the rate of growth of the wage
relative to the capital service cost. If technical change is biased, however, this calculation yields a biased estimate of the
elasticity of substitution.



Biased Technical Change - 20
high rate of output growth per capita (3.9%), the difference attributed to growth in capital per worker.
This makes it seem that East Asian growth might be driven mainly by the high savings rate of these
countries, in line with the predictions of the transitional dynamics of the neoclassical growth model.

However, this impression is highly sensitive to the elasticity of substitution and the implicit
assumption of Hicks neutral technical change. With an elasticity of substitution of 0.50, the generalized
residual more than doubles to 2.3% per annum; this is larger than the contribution of factor substitution
to labor productivity growth.'' Moreover, using the alternative decomposition, the residual exceeds the
contribution from factor substitution in all regions except Africa and Latin America, the two regions
with the lowest labor productivity growth rates.

Thus factor substitution, perhaps driven by savings along the lines of the neoclassical growth
model, does contribute to growth in output per capita in all regions. But under a reasonable assumption
about the elasticity of substitution, the contribution of technical change is larger in all regions of the
world experiencing labor productivity growth in excess of two percent per year. The conclusion that
savings and capital accumulation is the main driver of growth in East Asia or anywhere else is not

supported by the empirical evidence.

Extensions

Multiple factors

The generalized residual can be readily derived for production functions with more than two
input factors. Let F be a neoclassical production function with n factors of production, X, in addition to

labor, L, so that

Y = F(Xla XZa ceey Xi’h La A(t))

11 For these calculations, I have assumed that all changes in the quality of labor have arisen from relative factor price
changes and not at all from any technology-skill bias.
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Assume that F'is linear homogenous in input factors so that it can be written in intensive form,

i

y = f(x1, X2, .y Xn, AQ), Xi= T

Also assume that factor markets are competitive and the firm optimizes, so that, for all i

F; ;
X(wi(0), wad), .. A(D) = x; suchthat " = vy = &
Fr wr.

for factor prices w;. Then, following as above (see Appendix for details),

(I7) R = Rspiow + isj'[[l +iSi(o-ij - O'U)I)?j - isi(aij— o) (8 —§L)]

j:] i=1 =1

where o;; is the Allen partial elasticity between factor i and and factor price j.

Endogenous Technical Change

The Solow model and the analysis in this paper so far assume that technical change is exogenous.
However, factor prices might very well affect the development of new technology. There is a large
literature on “induced innovation” or “directed technical change” from Hicks (1932) through Acemoglu
(2003, 2007). If technical change responds to factor prices, then the decomposition into independent
factors is no longer accurate. As noted in the introduction, this point has been raised as a criticism of
the Solow residual and the same criticism applies to the generalized residual I introduce here.

However, my residual might still be meaningful even when technical change is endogenous for
the following reason: the development of new technology in response to changing factor prices most
often occurs only after a significant lag, as is well-known. For example, the cases studies of Jewkes et
al. (1959) show lags from invention to commercial product ranging from three years to over 100 years.

As long as productivity growth is measured over an interval shorter than this lag (e.g., one year), then it
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can still be decomposed into orthogonal components. In this case, the technical change observed during
this interval will indeed be independent of the factor prices changes observed during this interval. Of
course, the observed technical change might be a response to earlier factor price changes, so the
measured technical change is not necessarily exogenous. Nevertheless, this growth accounting serves to
distinguish labor productivity growth that arises from technical change from growth that arises from

concurrent changes in factor prices.

Conclusion

I have shown how technical bias influences the growth in output per worker and I have shown
how this influence can be calculated. I argue that technical bias is critical to understanding the full
impact of technical change on output per worker. Because the Solow residual does not include the
influence of technical bias, it is too easily misinterpreted as a complete measure of the rate of technical
change. With labor-saving technical change, this tends to overestimate the role of capital accumulation
in economic growth.

At the very least, this analysis suggests reasons for caution when attempting to draw inferences
about the sources of productivity growth from productivity calculations. Moreover, under plausible
assumptions, some well-known studies need to be reinterpreted. If the elasticity of substitution between
capital and labor is significantly less than one—as the latest econometric estimates suggest—then
neither nineteenth century US output per capita nor recent East Asian output per capita can be primarily
attributed to capital accumulation. Although investment driven growth was important in both instances,
technical change was even more important in both.

There are other examples where the role of technical bias might be important. Many economists
attribute growing wage inequality in the U.S. to skill-biased technical change. If so, then what might be

the effect of this technical bias on the growth of output per capita? The productivity growth slowdown
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of the 1970s or the computer “productivity paradox” might appear to have very different significance
once the influence of technical bias is taken into account. A skill-using technical bias combined with
substantial growth of skilled labor might mean, all else equal, that the total rate of technical change
significantly exceeds the Solow residual.

More generally, this paper highlights the importance of research about the sign and magnitude of
technical biases and about the possible endogenous origins of these biases, including “induced

innovation” and Acemoglu’s (2003, 2007) model of “directed technical change.”
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Appendix

Derivation of (8)
A useful corollary of the Euler theorem is that under constant returns to scale,

(Al) FKKK+FKLL:0 and FKLK+FLLL:O_

Assumption (4) can be restated as

(A2) H:i_B:U
w L

Totally differentiating and using (A1) to simplify,

dH—O—ﬂdan oH dhnlL ﬂd]nA
(A3) = VT ShK T oL T omA
Fix F FixF 0 Fx/F,
_ dink — dinL — 22K A
P P oA

so that

ok~ F} 0 Fg/Fy
OlmA FixkFF 0hA

Then the second term of (7) can be written, using a standard expression for the elasticity of

substitution,

N =3 — =5SO
(Ad) OInA FixF Fi

Substituting this expression into (7) yields (8).
Derivation of (17)

As in the two factor case, begin by taking the total derivative of Y with respect to ¢,



OF dx;
= Yijam dt T 9hA

S 0
= Z Sisj(oij—or)Vj + Zs, 8lnA

i,j=1
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OmF , K ., OhF.
= ZS,')O +

0lnA
A all’lFA “_i (9]1’1Xl* ‘_WiXi
(911114 O-U_Sj (9]11Wj’sz: Y

where the o; are Allen partial elasticities of substitution. The last two terms correspond to technical

change so that

n

(AS) R=9y - Zsisj(O'ij—O'Lj)f/j-
i=1

Taking the time derivative of the log of s;,

A

Si=wi+X;i—-Y
so, with a little manipulation,
Vi=58 -3 X

Substituting this in (AS)

n
R=%- Z $isj(oij—orp)(8;—=3L—X))
i,j=1
Given the Solow residual,

n

Rsotow = Y — Zsjjcj

=

(17) follows.
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Table 1. Nineteenth Century Growth of Output per Manhour, alternative decompositions
(annual growth rates)

Solow Decomposition Generalized Decomposition
Output / Input / Factor
manhour Residual manhour Residual Substitution
Lawrence Co., Mill No. 2
1835 — 1855 2.92% 1.67% 1.25% 2.71% 0.21%
US Private Domestic Economy
1800 - 1855 0.39% 0.20% 0.19% 0.30% 0.09%
1855 - 1890 1.06% 0.37% 0.69% 0.72% 0.34%
1890 - 1927 2.01% 1.24% 0.77% 1.55% 0.46%

Note: The Lawrence Company decomposition is done using an estimated elasticity of substitution of
0.14 (see Bessen 2008). The economy-wide decompositions assume an elasticity of substitution of
0.50. Sources: Bessen (2008), Abramovitz and David (2001)
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Table 2. Twentieth Century Growth of Output per Manhour, US Private Economy, alternative

decompositions
(annual growth rates)

Solow Decomposition

Generalized Decomposition

Output / Input / Factor
manhour Residual manhour Residual Substitution
US Private Business Sector,
1899-1960
using NIPA shares 2.38% 1.85% 0.53% 2.14% 0.24%
using Kendrick shares 2.38% 2.13% 0.25% 2.21% 0.17%
US Private Domestic Sector
1929 - 1967 1.67% 1.13% 0.54% 1.12% 0.55%

Note: David and Van de Klundert (1965) estimate the elasticity of substitution at 0.3165; Christensen
and Jorgenson (1970) estimate it at 0.79. Sources: David and Van de Klundert (1965), Christensen and

Jorgenson (1970)
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Table 3. World Growth of Output per Manhour, 1960 — 2000, alternative decompositions
(annual growth rates)

Solow Decomposition Generalized Decomposition
Output / Input / Factor

manhour Residual manhour Residual Substitution
World 2.3% 0.9% 1.4% 1.5% 0.8%
Industrial countries 2.2% 1.0% 1.2% 1.5% 0.8%
China 4.8% 2.6% 2.2% 3.6% 1.3%
East Asia exc. China 3.9% 1.0% 2.9% 2.3% 1.7%
Latin America 1.1% 0.2% 0.9% 0.4% 0.7%
South Asia 2.3% 1.0% 1.3% 1.5% 0.8%
Africa 0.6% -0.1% 0.7% 0.1% 0.6%
Middle East 2.1% 0.5% 1.6% 1.2% 1.0%

Note: Source of data is Bosworth and Collins (2003). Alternative decomposition assumes an elasticity
of substitution of 0.50.
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Figure 1. Hicks Neutral Case
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Figure 2. Labor Augmenting Technical Change, No Factor Substitution
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