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An Empirical Look at Software Patents
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Software patents have grown rapidly in number and now comprise 15%
of all patents. They are acquired primarily by large manufacturing firms
in industries known for strategic patenting; only 5% belong to software
publishers. The very large increase in software patent propensity over time
is not adequately explained by changes in R&D investments, employment
of computer programmers, or productivity growth. The residual increase in
software patent propensity is consistent with a sizeable increase in the cost
effectiveness of software patents during the 1990s, perhaps arising from changes
in the application of patent law to computer software.

1. Introduction

Over the past three decades, the federal courts, and to a lesser extent the
US Patent and Trademark Office (USPTO), gradually shifted from a view
hostile to patents on software-related inventions to a view that is now
significantly more favorable. The traditional view in patent law is that
abstract ideas are not in themselves patentable. Yet computer software
can be quite abstract, sometimes being little more than an algorithmic

This paper presents some of the results from our 2004 working paper of the same name.
Thanks to Peter Bessen of May8Software for providing a software agent to acquire our
patent database and Annette Fratantaro for her work with the Compustat data set.
Also thanks to John Allison, Tony Breitzman, Joseph Bush, and Rosemarie Ziedonis for
sharing data with us. We thank the editor and referees, Iain Cockburn, Mary Daly, Dan
Elfenbein, Terry Fisher, Bronwyn Hall, Joachim Henkel, Brian Kahin, David Mowery,
Leonard Nakamura, Cecil Quillen, Eric von Hippel, Rosemarie Ziedonis, and numerous
seminar participants for helpful comments. We alone are responsible for any remaining
errors. The views expressed here are those of the authors and do not necessarily represent
the views of the Federal Reserve Bank of Philadelphia or the Federal Reserve System.
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representation of basic mathematical principles. Mindful of this, during
the 1970s, the Patent Office and the courts applied very restrictive
rules toward granting and upholding patents that included computer
programs. Over time these restrictions were relaxed, gradually at first,
after the Supreme Court decision in Diamond v. Diehr (450 US 175) in
1981, and then more rapidly after the decision in In re Alappat (33 F. 3d
1526) in 1994.

This paper explores the effect of this economic experiment on
the patenting behavior of public firms. These changes may have been
important to the software publishing industry, which experienced rapid
growth at a time when software patent policy was still quite restrictive.
But we also look at firms in other industries, because the legal changes
have allowed these firms to acquire broad, relatively abstract patents by
claiming software elements.

We begin by constructing our own definition of a software patent
(there is no official definition) and assemble a comprehensive database
of all such patents. In Section 1 we describe this process and the process
of matching these patents to firm data in the Compustat database. In
Section 2 we summarize the general characteristics of these data. We find
that over 20000 software patents are now granted each year, comprising
about 15% of all patents. Compared with other patents, software patents
are more likely to be assigned to firms, especially larger US firms,
than to individuals. They are also more likely to have US inventors.
Surprisingly, most software patents are assigned to manufacturing firms
and relatively few are assigned to firms in the software publishing
industry (SIC 7372). Most software patents are acquired by firms in
industries that are known to accumulate large patent portfolios and to
pursue patents for strategic reasons (computers, electrical equipment,
and instruments). These large inter-industry differences remain even
after we control for R&D, software development effort, and other
factors.

In Section 3 we perform regressions that explore the “propensity
to patent” software inventions. This builds on the model of Hall and
Ziedonis (2001) which, in turn, builds on the empirical literature of
“patent production functions” (including Scherer, 1965; Bound et al.,
1984; Pakes and Griliches, 1984; Griliches, Hall, and Hausman, 1986).
We find a dramatic growth in software patent propensity even after
controlling for R&D, employment of computer programmers, and other
factors. This growth is quite similar to the remarkable growth in patent
propensity that Hall and Ziedonis (2001) found in the semiconductor
industry. The pattern of the residual increase is consistent with the ex-
planation that changes in patent law made software patents significantly
more cost effective, although there may be other explanations as well.
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We also find that industries known for strategic patenting have much
higher patent propensities. Section 4 concludes the paper.

To date, there have been relatively few empirical analyses of
software patents. Allison and Lemley (2000) report on characteristics of
software patents in a study of all patents. In addition, Allison and Tiller
(2003) discuss Internet business method patents which are a subset of
software patents. Graham and Mowery (2003) offer some preliminary
results for the software publishing and computer systems industries.
Graham and Mowery (2004) examine the prosecution of software patent
applications.

2. Background and Data

2.1 Changing Legal Treatment and Strategic
Patenting Industries

From the beginning, US patent law prohibited patents on abstract
ideas, scientific discoveries, and natural laws. The Constitution calls
for patents to promote the progress of the “useful arts,” generally
understood to mean industrial arts as distinct from the “liberal arts,”
which include science, mathematics, and the humanities. Courts have
often argued that abstract ideas are not by themselves patentable, only
their application to useful industrial processes. For example, in O’Reilly
v. Morse (56 US 62, 1854), the Supreme Court upheld Morse’s concrete
claims that covered the invention of the telegraph, but rejected his
abstract claim for “the use of the motive power of the electric or galvanic
current . . . , however developed, for making or printing intelligible char-
acters, letters, or signs, at any distances.”

Several rationales have been advanced for restricting the patenting
of abstract ideas. In Morse, the Supreme Court argued that such abstract
claims would be so broad as to pose an obstacle to future inventors. In ad-
dition, this broad claim would allow Morse to take advantage of newly
developed technologies without patenting them. Others have argued
that standards of patentability including novelty and nonobviousness
cannot be properly applied to abstract claims.1

In addition to the case law, two of the requirements of patentability
in the patent statute reflect this concern about abstract ideas: Section
101 limits the subjects that can be patented and Section 112 requires that
the invention be described in sufficient detail so that a person having
ordinary skill in the art can make or use all of the embodiments of the
claimed invention (Morse’s patent failed to do this).

1. See, for example, Judge Archer’s dissent in In re Alappat (33 F. 3d 1526, 1994).
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As computer use grew, the Patent Office, the courts, and industry
recognized that patents involving software might run afoul of these
various strictures against patenting abstract ideas, given the potentially
abstract nature of software. In 1965, President Johnson appointed a
commission that ultimately recommended against patent protection for
computer programs. Initial policies at the Patent Office and the Supreme
Court decision in Gottschalk v. Benson (409 US 63, 1972) were seen
as highly restrictive (Samuelson, 1990). But there was also significant
disagreement between the various courts and the Patent Office, leading
to uncertainty about exactly which computer-related inventions were
patentable subject matter and how the other patentability requirements
should be applied to these inventions.

These differences were resolved gradually. In 1981 (Diamond v.
Diehr, 450 US 175), the Supreme Court clarified the applicability of
patent protection for inventions involving software used in industrial
processes.2 Following this, the Patent Office liberalized its granting
policy (Samuelson, 1990, pp. 1093–4). In In re Alappat (33 F. 3d 1526,
1994), the Federal Circuit held that subject matter limitations did not
apply if the software produced “a useful, concrete, and tangible result,”
even if that result was just on a computer screen.

Several Federal Circuit decisions also largely eliminated the en-
ablement requirement for software inventions (Burk, 2002; Burk and
Lemley, 2002).3 Reviewing case law, Burk and Lemley (2002, p. 1162)
write: “For software patents, however, a series of recent Federal Cir-
cuit decisions has all but eliminated the enablement and best mode
requirements. In recent years, the Federal Circuit has held that software
patents need not disclose source or object code, flow charts, or detailed
descriptions of the patented program. Rather, the court has found high-
level functional description sufficient to satisfy both the enablement and
best mode doctrines.” The net effect of these various changes was that
policy toward software patents became much less restrictive after 1981
and especially after the early 1990s.

Software patents were never prohibited in the US, as is sometimes
claimed. In Benson, widely seen as the most restrictive decision, the
Supreme Court stated: “It is said that the decision precludes a patent for
any program servicing a computer. We do not so hold” (409 US 63, 71). In
our analysis, we do find significant numbers of patents using software

2. The claimed invention used a computer program to govern an otherwise standard
process for curing rubber.

3. See also Cohen and Lemley (2001) on the different treatment of software patents. In
the words of an IBM patent attorney, “[the patent standard] currently being applied in the
US invites the patenting of ideas that may have been visualized as desirable but have no
foundation in terms of the research or development that may be required to enable their
implementation” (Flynn, 2001).
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were granted during the 1970s. Although the Presidential Commission
and Congress debated whether this new technology should be covered
by patents, in the courts and in the Patent Office, the central issue was
the patenting of abstract ideas, not software technology per se. Subject
matter requirements worked to limit the patenting of inventions using
software, but this patenting was also restricted by enablement, novelty,
and nonobviousness requirements, and changes in legal doctrine in all
of these areas combined to dramatically ease the patenting of these
inventions.

Nor were these changes in legal doctrine primarily concerned with
“pure” software patents, that is, inventions that only claim elements
involving software and general purpose digital computers. It is true that
at certain times, the USPTO more readily granted patents that claimed
industrial hardware combined with software. But the courts repeatedly
held that patents could be obtained on software without such claims.4

Conversely, the changes in legal doctrine had an important effect on the
level of abstraction permitted in patents that claimed both software and
industrial hardware or processes, including patents with “embedded”
software. Patents involving software for controlling network routing,
the functioning of microprocessors, printers and copiers, or analyzing
seismic signals are all subject to varying degrees of abstraction and they
all received varying treatment at the Patent Office and in the courts.

Indeed, some observers have assumed that software patenting was
primarily a matter of concern to the prepackaged software industry.
However, if the effect of these doctrinal changes was to allow more
abstract claims in industrial patents, then they may also have had a
particularly profound impact on manufacturing industries. Thus the
economic experiment created by these changes in patent law concerns
software patents both with and without industrial elements and it
potentially concerns a wide range of industries. In our analysis below, we
include a broad range of industries in addition to the software industry
and we track the full range of patents that use software, not only those
that run exclusively on general purpose computers.

Of course, these software-specific changes in patent law occurred
against a backdrop of broader changes in patent law following the
creation of a unified appeals court for patents suits in 1982 (see Hall and
Ziedonis, 2001, for a nice summary). The court raised the evidentiary
standards required to challenge patent validity and tended to broaden
the interpretation of patent scope (Rai, 2003; Merges, 1997). The court

4. For example, In re Freeman (573 F. 2d 1273, 1978) applied a test where software more
or less had to involve mathematical equations and “wholly pre-empt” the use of those
equations for all possible applications in order to be unpatentable. In In re Johnson (589 F.
2d 1070, 1978), software that printed output was deemed to be patentable.
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relaxed the standards for evaluating whether or not an invention is
obvious to practitioners skilled in the art (Coolley, 1994; Dunner et al.,
1995; Hunt, 1999; Lunney, 2001; Henry and Turner, 2005). The court
was also more willing to grant preliminary injunctions to patentees
(Cunningham, 1995; Lanjouw and Lerner, 2001) and to sustain large
damage awards (Merges, 1997; Kortum and Lerner, 1999). The combined
effect of these regulatory changes is that software patents appear to
have gained greater appropriability and become less costly to obtain in
absolute terms over time and also possibly relative to other patents.

The software industry was highly innovative and growing rapidly
well before software patents became commonplace. Nominal invest-
ment in software grew 16% per annum during the 1980s (and 11% per
annum during the 1990s, Grimm and Parker, 2000). This innovativeness
is important for two reasons. First, in interpreting the results below,
the growing use of software is an important factor. Second, given this
history, it is not at all clear that patent protection was essential for
innovation in this industry.

This is not unusual. When surveyed, American firms in a number
of other innovative industries (including semiconductors and preci-
sion instruments) rate patents as a relatively less effective form of
appropriability (Levin et al., 1987; Cohen, Nelson, and Walsh, 2000).
Instead, they cite lead time advantages, learning curves, complementary
sales and service, and secrecy as generally more important sources of
appropriability.

Yet even in industries where patents are rated as ineffective, we
sometimes observe that firms acquire large patent portfolios. We call
these industries, including the computer, electrical equipment, and
instruments industries, the “usual suspects.” They are also found to
account for a major share of the growth in patenting in recent years (Hall,
2003). Some researchers have suggested that firms in these industries
may patent heavily in order to obtain strategic advantages, including
advantages in negotiations, cross-licensing, blocking competitors, and
preventing suits (Levin et al., 1987, fn 29, and Cohen, Nelson, and Walsh,
2000).

In principle, strategic patenting can arise whenever individual
products involve many patentable inventions and the cost of obtaining
patents is sufficiently low (see Bessen, 2003 and Hunt, 2006 for theoreti-
cal models). Firms may acquire large numbers of patents so that even if
they have an unsuccessful product, they can hold up rivals, threatening
litigation. Innovative firms may acquire “defensive” patent portfolios
to make a credible counter-threat. The outcome may involve the cross-
licensing of whole portfolios, where firms agree not to sue each other and
those firms with weaker portfolios pay royalties (Grindley and Teece,
1997).
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So, in what follows, it is natural for us to be alert to the possibility
that software patents may also be acquired for strategic purposes and
we will find distinctive behavior in the industries known for strategic
patenting. An important implication of strategic patenting is that policy
changes that “strengthen” patents (or make them cheaper to acquire)
can lead to a kind of “Prisoner’s Dilemma” game that actually decreases
the private incentive to engage in R&D.

2.2 What Is a Software Patent?

How many software patents are being granted? Although the patent
office maintains a system for classifying patents, this system does not
distinguish whether the underlying technology is software or something
else. Researchers must construct their own definitions.

As noted above, legal changes created a natural economic experi-
ment that affected all patents that use software, not just “pure” software
patents. Because we want to investigate the effects of this experiment,
we need an operational definition of software patents that includes all
these patents.

Our concept of software patent involves a logic algorithm for
processing data that is implemented via stored instructions; that is,
the logic is not “hard-wired.” These instructions could reside on a disk
or other storage medium or they could be stored in “firmware,” that
is, a read-only memory, as is typical of embedded software. But we
want to exclude inventions that do not use software as part of the
invention. For example, some patents reference off-the-shelf software
used to determine key parameters of the invention; such uses do not
make the patent a software patent.

2.2.1 Identifying Software Patents
How can we identify patents that fit this description? Griliches (1990)
reviews the two main techniques that researchers have used to assign
patents to an industry or technology field: (1) using the patent clas-
sification system developed by the patent office; and (2) reading and
classifying individual patents. In this paper, we use a modification of
the second technique.

We began by reading a random sample of patents, classifying them
according to our definition of software, and identifying some common
features of these patents. We used these to construct a search algorithm to
identify patents that met our criteria. We used this algorithm to perform
a keyword search of the US Patent Office database, which identified
130,650 software patents granted in the years 1976 to 1999.5

5. See the Appendix for a description of the search algorithm we use.
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Next, we conducted several tests to validate the power and accu-
racy of our algorithm. These tests used three random samples of patents
that were each read and classified as to whether they were software
patents or not. The first sample consisted of 400 patents granted in the
years 1996–98. The second sample, also from the 1990s, consists of 330
software patents identified by John Allison and used in Allison and
Lemley (2000) and Allison and Tiller (2003).6 The third sample consists
of 100 patents from the 1980s that were identified as software patents
by our algorithm.

First, we measured the power of our algorithm, that is, we mea-
sured the percentage of patents that our algorithm correctly identified
as software patents in our two random samples (See Table AII in the
Appendix).7 Our algorithm found 78% of the software patents in our
first random sample and 92% of the software patents in John Allison’s
sample.

Second, we measured the accuracy of our algorithm, that is, we
measured the percentage of patents that were incorrectly identified as
software patents by our algorithm. In our 1996–8 sample of patents
our algorithm identified as software patents, 16% were not, based on
our reading of the patents.8 Among patents granted during the 1980s
(our third sample) our algorithm identified as software patents, 9% were
not, again based on our reading of the patents.

These low error rates may seem surprising, given that patent
drafters sometimes obscure the use of software by making the language
in the claims sound like special purpose industrial equipment. For
example, patent 4931783 (from 1988) claims “a computer-controlled
display system,” for what is actually a computer program running on
a standard computer.9 But although the patent claims are obscure (the
subject matter restrictions applied to the claims), the written description
describes the best mode of the invention as a “computer program,” so
our algorithm successfully identifies this as a software patent. Indeed,
patent drafters have several strong reasons to make clear the real nature
of the invention in the written description: if they do not do so, they

6. Thanks to John Allison for sharing his data with us. The data used in Allison and
Lemley (2000) are based on reading 1,000 randomly selected patents issued between mid
1996 and mid 1998. The data were augmented in Allison and Tiller (2003) by examining
2,800 patents issued between 1990 and 1999 identified via a keyword search (for the terms
Internet or world wide web) restricted to patents included in classes 705, 707, or 709. Note
that in the Allison and Tiller taxonomy, internet business method patents are a subset
of software patents. Allison uses a similar definition of software patent, identified by
whether the claims involve logic processing steps or not.

7. This is equivalent to calculating (1—the false negative rate).
8. The associated false positive rate in this sample was 2%—among the 346 patents we

manually classified as not software, the algorithm classified 8 as software patents.
9. Thanks to Robert Barr for bringing this to our attention.
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risk finding that their own product may not be covered. In addition,
without such clear description, the patent may not be enabled or the best
mode requirement may not be met.10 Because our algorithm searches
the written description for key terms, it is surprisingly accurate even for
patents granted in the 1980s.

The validation tests suggest that our algorithm finds most of
the software patents and it makes relatively few mistakes. It might
be possible, however, that our algorithm makes more mistakes for
certain groups of patents than others, so we compared the error rate
across three pairs of subgroups: patents granted in the 1990s versus
those granted in the 1980s; patents to US inventors versus those to
foreign inventors; and patents in the “Computers and Communications”
technology classes versus others (using the NBER class categories in
Hall, Jaffe, and Trajtenberg, 2001a). Using t-tests, none of the differences
in error rates were statistically significant at the 1% or 5% levels. Our
algorithm had a somewhat higher error rate for patents outside the
computers and communications technology classes (16% versus 7%),
but this difference was only significant at the 10% level.

Although the algorithm does make errors, it performs reasonably
well, and it seems unlikely that it introduces significant biases to
our patent counts or regression coefficients. In the next section, we
report on an additional robustness test. We compared our tabular and
regression results with those obtained using an entirely different means
of identifying software patents.

2.2.2 Using Patent Classes to Identify
Software Inventions

Why did we use this rather laborious method rather than simply
counting patents in certain patent classifications? First, in a longitudinal
study patent classes are problematic because the classification system
changes over time and the patent office continually re-classifies issued
patents. Moreover, lawyers are known to draft patents so that they avoid
falling into certain classes in order to influence the examiner’s prior art
search or some other aspects of the examination (Lerner, 2004, p. 19).

Second, economists have long recognized the poor correspondence
between patent classes and economic concepts of industry or technology
(see, for example, Schmookler, 1966; Scherer, 1982a; Soete, 1983; Scherer,

10. In order to be valid, a patent must be “enabled,” that is, the written description
must provide enough detail so that a person having ordinary skill in the art can practice
the invention without undue experimentation or development. In addition, the written
description must provide the “best mode” of practicing the invention known to the
inventor at the time of filing.
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1984; Griliches, 1990). Patent classes are not designed with social scien-
tists in mind but are used primarily to aid prior art search.11

In the US classification system, there are no patent classes for
software per se. Instead, software inventions are included in functional
categories along with hardware inventions. For instance, one class
includes “arrangements for producing a permanent visual represen-
tation of output data.” This is a functional description that includes
software programs, hardware computer displays, and even electric and
mechanical signs that predate electronic computers.

Still, we did examine the efficacy of using the patent classification
approach for identifying software inventions, as proposed in Graham
and Mowery (2003). In that paper, the authors identified a number
of subdivisions of the International Patent Classification system (IPC)
where many patents assigned to large US software companies may be
found.12 We also ran our validation tests using the Graham and Mowery
classification. The results, reported in the Appendix, show that our
algorithm had substantially better power and accuracy. In addition, the
IPC-based definition would exclude half of the patents obtained by the
top 200 publicly traded software firms during the 1990s. In contrast, our
definition accounts for about 4/5 of all patents obtained by the top 200
software firms in the 1990s.

Nevertheless, to check whether our main results were robust to
our choice of algorithm, we ran most of our tabular analyses and
regressions below using the Graham–Mowery classification of software
patents. The results were broadly similar. For example, the distribution
across industries was similar (see Appendix Table AIII). If anything,
Graham and Mowery’s software patents are more highly concentrated
among computer and electronics firms (71% compared to 58%). We
also ran our Poisson regressions from Table V using Graham–Mowery
software patent counts as the dependent variable. Standard errors were
somewhat higher, but the coefficients were not markedly different.

To summarize, our algorithm finds most of the software patents,
it makes relatively few errors, and these errors do not seem to vary

11. Allison and Lemley (2000) and Allison and Tiller (2003) also reject the idea of
using patent classifications to identify software patents. According to Griliches (1990), a
patent class is “based primarily on technological and functional principles and is only
rarely related to economists’ notions of products or well-defined industries (which may
be a mirage anyway). A subclass dealing with the dispensing of liquids contains both a
patent for a water pistol and for a holy water dispenser. Another subclass relating to the
dispensing of solids contains patents on both manure spreaders and toothpaste tubes”
(Griliches, 1990, p. 1666).

12. The subdivisions include G06F 3/, 5/, 7/, 9/, 11/, 13/, and 15/; G06K 9/, and 15/;
and H04L 9/.
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systematically across subgroups.13 Our main results hold even when
we use a very different methodology for identifying software patents.

2.3 The Matched Sample

We also explore the characteristics of the firms that obtained software
patents. To do this, we matched a large portion of both software patents
and other patents to firms in the 1999 vintage of the Compustat database.

Our main population of interest consists of US-owned public firms
that perform R&D. This group performs a large share of domestic R&D
and it should provide a relatively stable group for comparison over time.
But it does limit the relevance of our conclusions to this group, however,
and so our analysis has little to say about start-up firms, individuals,
universities, etc.14

We begin by matching our patents to firms (that is, the assignees)
using the NBER Patent Citations Data File (Hall, Jaffe, and Trajtenberg,
2001a).15 This data set matches patents to the 1989 vintage of firms
contained in Compustat, so we do a variety of things to supplement
those matches:

1. We added the largest 25 publicly traded software firms ranked by
sales (only one of which is included in the NBER file).16

2. We merged the data set with a set of firm-patent matches provided to
us by CHI Research.17 Those data encompass most of the significant
patenting firms (public or private) over the past 25 years.

3. Using data contained in Compustat, we identified 100 of the largest
R&D performers in 1999 that were not already included in our data
set. We matched these firms and their subsidiaries to their patents
using a keyword search on the USPTO web site.

13. For examples of errors see Hahn and Wallsten (2003), who critiqued an earlier
version of our working paper.

14. Descriptive statistics for the sample of firms (with and without patents) drawn
from Compustat are reported in Columns 4 and 5 of Table AI.

15. To be precise, we match patent numbers in our data set with those found in the
NBER data set. Where available, we use the firm CUSIP assigned by NBER to obtain
financial data from Compustat.

16. As a result, we over-sample the software industry. According to BLS data, SIC 7372
makes up 0.2% of total private employment. SIC 7372 comprises 0.7% of employment
among Compustat firms and 1.1% of employment among matched firms.

17. We again match by patent number and use the firm CUSIP assigned
by CHI. Details on CHI’s proprietary data is described at http://www.
chiresearch.com/information/customdata/patdata.php3. We are grateful to Tony
Breitzman for sharing the data with us.
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The final file held 4,792 distinct subsidiaries and 2,043 parent firms from
1980 to 1999, an improvement of 1,230 subsidiaries and 305 firms over
the NBER database for the same period.18

To test the coverage of this matched sample, we compared it to the
target population in Compustat (that is, all US firms that publicly report
financials with positive R&D). The matched sample performed 91% of
the deflated R&D in the Compustat file over this period and accounted
for 89% of the deflated sales by R&D-performing firms. Moreover, the
coverage ratios are roughly constant over the entire sample period,
varying only a few percentage points in each direction over 2 decades.
Over this period, the matched sample also accounts for 68% of all
successful US patent applications by domestic nongovernment orga-
nizations (mostly corporations) and 73% of software patents granted to
these organizations. These coverage ratios were also quite stable over
the 2 decades.19

However, only 37% of the R&D-performing firms contained in
Compustat are matched to their patents in our data set and this coverage
declined over the sample period as an increasing number of small firms
have gone public since 1980. Thus this matched sample is broadly
representative of the firms that perform most of the R&D and obtain
the majority of patents, but it is not representative of entrants and very
small firms.

2.4 Other Data

We used the NBER Patent Citations Data File (Hall, Jaffe, and
Trajtenberg, 2001a) to obtain data on citations received and numbers of
claims. To obtain data on employment of programmers and engineers,
we used the Occupational Employment Survey conducted by the BLS.
This source provides detailed occupational employment of three-digit
SIC industries. Because not all industries were covered in all years
of the survey during the early years, we linearly interpolated some
employment shares.20

18. The original NBER sample accounted for 47% of the successful patent applications
to US nongovernment organizations; our sample accounts for 68% of these patents.

19. The top ten assignees of software patents not included in the matched sample are,
in rank order, Canon, NEC, Ricoh, Minolta, US Navy, Brother, Sharp, Samsung, Toyota,
and the University of California.

20. Thanks to Joseph Bush of the BLS for providing the data. The employment
categories we used for programmers were occupation codes 25102, systems analysts,
and 25105, computer programmers; for engineers, we used 22100 (a group code). Because
computer support occupations (25103 and 25104) were lumped in with the other codes
during early years of the survey, we make a proportional adjustment in those years,
reducing the employment counts of programmers by their relative share in the first year
in which all categories were reported.
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3. Summary Statistics

Table I reports the number of software patents and other patents granted
per year and also the number of applications per year, conditional on the
applications successfully resulting in a grant by the end of 1999. As can
be seen, their numbers have grown dramatically in absolute terms and
also relative to other patents. Today almost 15% of all patents granted
are software patents.

Table I.

Number of Software Patents

Successful Patent
Patents Issued Applications

Software Total Utility Software/ Software Total Utility
Patents Patents Total (%) Patents Patents

1976 765 70,226 1.1 853 65,804
1977 884 65,269 1.4 1,094 65,978
1978 897 66,102 1.4 1,170 65,601
1979 795 48,854 1.6 1,439 65,726
1980 1,080 61,819 1.7 1,633 66,491
1981 1,275 65,771 1.9 1,821 63,910
1982 1,402 57,888 2.4 2,233 65,009
1983 1,443 56,860 2.5 2,297 61,563
1984 1,939 67,200 2.9 2,641 67,071
1985 2,453 71,661 3.4 2,924 71,442
1986 2,657 70,860 3.7 3,482 75,088
1987 3,530 82,952 4.3 4,055 81,458
1988 3,495 77,924 4.5 4,841 90,134
1989 4,974 95,537 5.2 5,755 96,077
1990 4,704 90,364 5.2 6,471 99,254
1991 5,347 96,513 5.5 7,091 100,016
1992 5,862 97,444 6.0 8,149 103,307
1993 6,756 98,342 6.9 9,459 106,848
1994 8,031 101,676 7.9 12,251 120,380
1995 9,000 101,419 8.9 16,617 137,661
1996 11,359 109,645 10.4 17,085 131,450
1997 12,262 111,983 10.9 13,087 114,881
1998 19,355 147,519 13.1
1999 20,385 153,486 13.3
2000 21,065 157,595 13.4
2001 23,406 166,158 14.1
2002 24,891 167,438 14.9

Note: Utility patents excluding reissues. Successful patent applications are the number of patent applications that
resulted in patent grants by the end of 1999.
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Table II.

Characteristics of Software Patents (1990–95)

Software Other
Patents Patents

Assignee type
Nongov’t. org. (firm) 88% 80%
Individual/unassigned 11% 18%
Government 2% 2%

US assignee (if assigned) 70% 51%

US inventor 69% 53%

Mean citations received 9.7 4.6
Number of claims 16.8 12.6
Percent of self-citations 12% 13%

Percent of patents owned by top 5% of assignees 63% 63%

Note: Total patents: 39,700 software, 546,058 other. Self-citations are the average of the upper and lower bounds (see
Hall, Jaffe, and Trajtenberg, 2001a). Differences between the means in the first two columns are all significant at the
1% level.

3.1 Who Owns Software Patents?

Table II shows characteristics of software patents compared with other
patents, using data from the NBER patent database. Software patents are
more likely to be owned by firms than by individuals or government.
They are also more likely to be owned by US assignees and to have
US inventors.21 After the US, the top countries ranked by inventors are
Japan (18%), Germany (3%), Great Britain (2%), and Canada (2%).

Table III reports several measures of the size of the owners of
patents in our matched sample by the type of patent (software or
other).22 Ranking patents by the size of their owners, the table shows
that the median software patent has a larger owner than the median
nonsoftware patent. This is also true for rankings by market value, sales,
and R&D. Note that the unit of observation here is the patent, not the
firm, so that firms with multiple patents are represented multiple times,
and possibly, in both columns. Software patents are also slightly more
likely to be obtained by newly public firms. Allison and Lemley (2000)
also find that software patents are more likely to be obtained by larger
entities as classified by the patent office.

21. Allison and Lemley (2000) find that their sample of software patents has about the
average share of US inventors, although they use a somewhat different method to classify
inventors’ national origins.

22. A patent granted in a given year is associated with a (deflated) measure of size for
the firm in that year.
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Table III.

Firm Characteristics by Patent Type (1990–99)

Software Nonsoftware
Patents Patents

Median firm market value (million $96) 24,485 11,554
Median firm sales (million $96) 13,382 8,940
Median firm R&D (million $96) 956 376
Newly public firm 5.8% 5.1%

Note: Table shows the characteristics of the owner of the median patent (patents ranked by owner size) for each type of
patent during the years 1990–99 from the sample matched to Compustat. Firms that obtain both software and other
patents are included in both columns of the table. Firms that don’t obtain software patent appear in column 3 only.
Covers 48,072 software patents and 274,529 nonsoftware patents. Newly public firms first appeared in the Compustat
file within the last 5 years.

3.2 The Distribution of Software Patents
Across Industries

Table IV shows the industries of the firms obtaining software patents
in the sample matched to Compustat. Most of the software patents
are obtained by manufacturing firms, especially in the electronics and
machinery industries, which include computers. Software publishers
(SIC 7372) acquire only 5% of the patents in this sample, and other
software service firms, excluding IBM, account for 2%.23 The “usual
suspects” for strategic patenting—SIC 35, 36, 38 and IBM—account for
68% of software patents.

The distribution of software patents across industries appears to
reflect something other than the creation of software. Columns 2 and
3 include two measures that reflect software creation: the share of
programmers and systems analysts employed in the industry and the
share of programmers, systems analysts, and engineers. These are the
occupations most directly involved in the creation of software and so
these shares should represent the relative software development effort,
the first measure more narrowly than the second.

The manufacturing sector acquires 75% of software patents but
employs only 11% of programmers and analysts (32% of software writers
if engineers are included). Software publishing and services (SIC 737, in-
cluding IBM) acquires only 13% of software patents but employs 33% of
programmers and analysts (18% if engineers are included). There is little
reason to expect software developers employed in software companies
or finance or retailing to be far less productive than software developers

23. IBM accounts for 13% of the software patents in our sample and it is consistently
the largest software patentee. We break it out separately, as it is not representative of the
software services industry.
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in manufacturing. These large differences suggest that industries differ
dramatically in the degree to which they seek patent protection for their
software.

This disparity also appears in the fifth column, which reports the
differences in the simplest measure of patent propensity, the ratio of
all patents to R&D. Software publishing firms get only a quarter of
the number of patents per dollar of R&D that other firms obtain. This
corresponds to the views expressed by software publishing executives
that software patents are of little value to them (USPTO, 1994).24

The sixth column displays a measure of software patent propensity
derived from the regression analysis described below. This is normalized
so that the software patent propensity of SIC 73 has a value of one.
Overall, software patents are more likely to be obtained by larger firms,
established firms, US firms, and firms in manufacturing (and IBM); they
are less likely to be obtained by individuals, small firms, foreign firms,
and software publishers.

4. The Rising Propensity to Patent Software

From 1987 to 1996 the number of successful software patent applications
(granted by 1999) increased 16.0% per annum. This growth was greater
than any of a number of yardsticks one might measure it against:
during roughly the same period, real industrial R&D grew 4.4% per
annum, employment in computer programming related occupations
grew at a 7.1% rate, and real business spending on own-account and
outsourced programming grew 7.4% per year. This growth occurred
against a general background of rising patent propensity—the ratio of all
domestic patent applications to real R&D—grew about 2.1% per year.25

We can identify several possible factors that might contribute to
increased software patenting: growth in R&D generally, growth in that
portion of R&D that uses software, greater productivity in software
development, and changes in the cost-effectiveness of software patents
from regulatory or other sources. To help sort out the roles played by
these different factors, we use a “patent production function” model of

24. In addition, BEA analysis of software investment (Grimm and Parker, 2000) implies
that about 30% of software is produced as packaged software, the primary product of firms
in SIC 7372. Yet this industry acquires only 5% of software patents.

25. Total industrial R&D increased from $121 billion in 1988 to $164 billion in 1998 in
1996 dollars (NSF, 2003). The BLS Occupational Employment Survey estimates 904,430
employees in “computer scientists and related occupations” in 1987–89 and 1,839,760 in
1998. The BEA estimates $38 billion in 1996 dollars for business spending on own-account
and custom software in 1989 and $64 billion in 1998 (Grimm and Parker, 2000). The general
increase in patent propensity has been explored by Kortum and Lerner (1999) and Hall
and Ziedonis (2001).
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Hall and Ziedonis (2001). This production function relates the number
of successful patent applications made by a firm each year to its size,
relative R&D spending and other characteristics, plus a time dummy,
which serves to capture residual changes in patent propensity.

4.1 Specification

In the base specification of this model, the expected number of patents
for firm i in year t, conditional on firm characteristics for that firm and
year, is

E[nit] = exp
(

αt + β1 ln Employeesit + β2 ln
R&Dit

Employeeit

+ β3 ln
Capitalit

Employeeit
+ β4δi

)
, (1)

where δ is a dummy variable that equals one if the firm is a new entrant
and zero otherwise. The right-hand side variables capture the effects of
scale, R&D intensity, capital intensity, and new entrant status. The time
dummy then captures changes in the propensity to patent. Differences
in the time dummies between two different years correspond to log
differences in the expected number of patents. This is our initial speci-
fication to which we add additional controls, including firm effects and
a measure of software development intensity.

This equation can be interpreted as a “software patent produc-
tion function,” where the right-hand-side variables are input factors
(scaled by employment). In this base specification, we use aggregate
R&D, which includes R&D spent on software engineers, on hardware
engineers, and on other specific R&D inputs. We do not observe these
disaggregated factors, but we want to control for possible differences
in their elasticities. We assume that firms within an industry face
common prices for these inputs, firms are cost minimizers, and any
firm heterogeneity in the productivity of software patent production
is captured in the firm fixed effects. In the regressions, we control for
variation in the use of these different factors by including the shares
of software and other engineers in industry employment (to capture
industry differences in the cost and use of these factors) and firm fixed
effects to control for firm heterogeneity.

Because the left-hand-side variable in (1) is a count and many
observations are zero, the equation can be estimated with a Poisson
regression, as is frequently done in the literature. The Poisson regression
assumes that the variance equals the expected value of the left-hand-side
variable, but often Poisson specifications fail to meet this assumption
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and show “over-dispersion.” Tests using a negative binomial specifi-
cation reveal over-dispersion in our data too, and, following Hall and
Ziedonis (p. 113), we take this as an indication to use heteroscedastic-
consistent standard errors. Regressions using the negative binomial
specification produced broadly similar estimates of the coefficients.
However, as Hall and Ziedonis point out, negative binomial estimates
are inconsistent if the true distribution is not actually negative binomial.
The Poisson estimates, on the other hand, will still be consistent even
with overdispersion, so we prefer to present Poisson estimates using
heteroscedasticity-robust standard errors.

Our analysis differs from Hall and Ziedonis in two important
ways, however. First, our dependent variable is not all of the patent
applications of the firm, just software patent applications. In principle,
this should cause no problem—one still expects size, R&D intensity,
etc. to affect the level of software patents. But we may also want to
control for the degree to which the firm directs resources to software
development, which we do using employment shares. Second, Hall and
Ziedonis study a narrowly defined industry whereas we study a broad
range of industries. For this reason, we will want to control for industry
or firm effects in some of our regressions.

In our base specification nit is the number of software patent
applications by firm i in year t that resulted in a patent granted by
1999. Because patent prosecution typically takes two years or so, we
conduct our regressions through 1997.26 The other variables are as
follows: employees is the number of employees listed in Compustat in
thousands, R&D is deflated by the GDP deflator, and capital is property,
plant, and equipment deflated by the NIPA capital goods deflator. The
“new firm” dummy is equal to 1 for the first five years a firm appears
in Compustat.

4.2 Results

Column 1 of Table V shows the base regression. Column 2 adds seven
industry dummies and variables to capture the relative use of program-
ming personnel. The first of these variables is the ratio of “computer
scientists and related occupations” to total industry employment in the
BLS Occupational Employment Survey (OES) for the firm’s SIC three-
digit industry (or two-digit if Compustat assigns the firm only two
digits). The second variable is the comparable share of engineers in total
employment. The OES was conducted on a three-year cycle until 1995,

26. The mean lag from application to grant for software patents from 1980–95 was
2.3 years, suggesting at worst a modest truncation bias in 1997.
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so values for this variable in intervening years are linearly interpolated.
For comparability, we used OES data only from 1987 onward, so the
second column covers a shorter interval.

As discussed above, these employment share variables capture
the disparate effects of different R&D inputs. The large coefficient on
the programmer employment share indicates that a dollar of R&D at
a firm with relatively more programmers will, all else equal, generate
relatively more software patents. Engineers also increase the software
patent productivity of R&D, but not nearly as much.

The elasticity of the scale variable, employment, is similar to
estimates in previous studies. Hausman, Hall, and Griliches (1984)
obtained an elasticity of 0.87 on R&D. Hall and Ziedonis obtained
an elasticity of employment of 0.85 when they included some firm
controls. The coefficient of the R&D intensity variable is, however, much
higher than in Hall and Ziedonis, although when we include firm fixed
effects below, this difference largely disappears, suggesting that it is
picking up unmeasured firm/industry heterogeneity. Capital intensity
(in Column 2) is also significant and similar in magnitude to one estimate
by Hall and Ziedonis, but smaller than another. Hall and Ziedonis
interpret this coefficient as evidence that capital-intensive firms may
patent more because they are subject to holdup by rivals who patent
strategically. That is, this is evidence of “defensive patenting.” Our result
suggests this hypothesis might apply more generally.

4.2.1 New versus Old Firms
We find that the “new firm” dummy variable is not significant. In
contrast, Hall and Ziedonis find that their dummy variable is highly
significant and has a relatively large coefficient.27 They suggest that their
result arises from new semiconductor design firms that need patents
to secure financing (see also Hall, 2003). These smaller firms do not
have complementary manufacturing facilities that may provide another
means of appropriability.

Although our sample may not be representative of the entire
population of new firms, this regression does include a reasonably large
sample of new firms (1308 observations during the first five years of 314
firms). Hence our different result suggests that either software patents

27. There is also a difference between the definition of our new firm variable and
theirs. Hall and Ziedonis include all firms that entered Compustat after 1982. We include
firms that entered in 1982 or later, but our dummy variable equals 1 only for the first five
years of entry. Their initial interest was to compare whether incumbent firms in particular
benefited from the creation of the Court of Appeals for the Federal Circuit. Our interest
is whether entrants appear to find additional benefits from software patents, something
Hall and Ziedonis explored specifically for entrant design firms with an additional dummy
variable.
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are not comparably useful for obtaining financing in general or this
“vertical disintegration” strategy is not broadly relevant outside the
semiconductor industry, or both.

We explored this issue further by interacting the new firm dummy
variable with industry dummy variables. Only one of these interac-
tion terms was statistically significant, the one for SIC 73, business
services, which in our sample largely consists of software services and
prepackaged software firms. Column 3 shows a regression with just
this interaction term added. The coefficient is negative and statistically
significant, suggesting that new software firms obtain fewer software
patents than established firms.28 This suggests that new software firms
may not obtain the same benefit from patents as do new semiconductor
firms.

4.2.2 Cross-Industry Variation in Software
Patent Propensity

Returning to Column 2, the coefficients on the industry dummies
indicate large inter-industry differences in software patent propensity
even after controlling for industry employment of programmers and
engineers. Given the exponential specification, (1), differences between
industry coefficients correspond to differences in the log of software
patent propensity. Column 6 of Table IV shows corresponding differ-
ences in software patent propensity itself (that is, the exponential of
the coefficients), normalized so that the software patent propensity of
SIC 73 equals 1 (this includes IBM). As can be seen, the differences are
quite large, with SIC 36 and SIC 38 obtaining an order of magnitude
more software patents, all else equal, and machinery, SIC 35, not too far
behind. In general, the industries that have a high propensity to patent
software also have a high patent propensity in general (see Column 5
of Table IV), although the differences in software patent propensity are
larger. These are the “usual suspect” industries.

The magnitude of these differences and the known importance
of strategic patenting in electronics and computers suggest that these
results may be the outcome of strategic patenting. To test this idea
further, Column 4 drops the industry dummies but includes instead a
measure of the degree to which other firms in the industry patent. This
variable is the number of all patents obtained by other firms in the same
two-digit industry as the observed firm, divided by the employment of
those firms. The positive and significant coefficient suggests that firms

28. We also ran these regressions using the total number of patents, not just software
patents, as the dependent variable and obtained similar results (not shown). Graham
and Mowery (2003) report that the software patent propensities of established software
publishers rose over the 1990s, but for entrant firms (those founded after 1984) there was
no discernable trend.
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obtain more software patents in industries that patent more overall,
all else equal. This result is consistent with “defensive” patenting,
although it could also arise from other industry differences, such as
large differences in alternative means of appropriability.

4.2.3 Unobserved Heterogeneity
Our seven industry dummy variables do not capture the full extent
of inter-industry heterogeneity or other firm heterogeneity. This was
confirmed by tests using the random effects and fixed effects Poisson
models (Hausman, Hall, and Griliches, 1984). We then face the choice of
better controlling for this unobserved heterogeneity via a random effects
or a fixed effects model. A Hausman test rejects the null hypothesis
that the random effects estimates are consistent; that is, the firm effects
appear to be correlated with the coefficients (P = 0.000), indicating that
fixed effects are preferred.

Column 5 presents the fixed effects Poisson regression. This is
a conditional maximum likelihood regression where the likelihood of
each observation is conditioned on the likelihood of the observed sum
of software patents for each firm over all years in the panel. This is
only calculated for firms that have software patents in at least one
year. Because many firms obtain no software patents, the sample size
is reduced considerably for this regression. With fixed effects, the scale
elasticity is somewhat smaller and is consistent with earlier research
(Hausman, Hall, and Griliches, 1984) and the R&D intensity coefficient
is now much more in line with the estimates in Hall and Ziedonis (2001).
Note that the time trend in this regression is nearly the same as what we
found in the regressions without fixed effects.

4.3 Time Trends

4.3.1 Role of Observable Factors
We use the fixed effects specification to interpret the relative influence
of various right-hand-side variables on software patenting trends over
time. Because (1) is exponential in form, changes in variables times their
coefficients affect the log of software patents and can be interpreted as
growth rates. To calculate annual growth rates, we evaluate the mean of
each variable in 1996 and subtract the mean in 1987. We then multiply
this difference by the estimated coefficient from Column 5 and divide by
9 (the number of years elapsed) to obtain an annual contribution of the
variable to the growth of software patents for our sample. The resulting
estimates are shown to the right of Column 5. A similar calculation for
the year dummies is shown for all columns in a separate row.
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The annual growth of software patenting among the firms in this
sample (which excludes firms without any software patents over this
entire period) is 16.4%, slightly larger than the aggregate 16.0% reported
above. The majority of this increase is captured by the contribution
of the year dummies (10.8%). The next largest contribution is from
greater capital intensity (1.8%) followed by the growth in programmer
employment (1.2%), engineer employment (1.2%) and R&D intensity
(1.1%).

Thus the majority of the growth in software patenting could not be
attributed to any of these explicit controls and can be attributed, instead,
to rapidly rising patent propensity. Note that this increase in patent
propensity is quite close to the result obtained by Hall and Ziedonis
(2001) for all patents in just the semiconductor industry. A comparable
calculation on their preferred specification also results in a 10.8% annual
growth in patent propensity from 1987–95.29 But such growth rates are
far from typical for total patenting in most industries.

In Figure 1, we plot the year dummies from this regression (nor-
malized to equal 1 in 1987), those from the Column 1 regression, which
spans a longer time period, and the corresponding year dummies from
Hall and Ziedonis’ preferred specification. As can be seen, after the
mid-1980s, all three series grow rapidly, persistently, and at about the
same rate. Compared to the rate for 1987, and holding all other factors
constant, firms were successfully applying for nearly 50% more software
patents in 1991, and 164% more by 1996.

The close correspondence between the pattern of growth of soft-
ware patent propensity and the growth of overall patent propensity
in the semiconductor industry is striking. Only a minority of semi-
conductor industry patents were software patents (21% during 1994–
97), so it appears that the patent propensity of nonsoftware patents
in the semiconductor industry displayed essentially the same pattern
of increase as software patents. This suggests that a common causal
factor may have affected both software and nonsoftware patents in this
industry, although the similarity could just be a coincidence.

4.3.2 Innovative Productivity or Legal Changes?
In principle, software patent propensity can be decomposed into two
factors: an increase in the productivity of software developers, and
change in the cost effectiveness of patenting.30 The first factor means
that software developers may produce more inventions using the same
level of inputs. The second means that firms find it more attractive to
patent a higher proportion of inventions, perhaps because the cost of

29. Thanks to Rosemarie Ziedonis for graciously sharing data.
30. See Hall and Ziedonis (2001) for a similar discussion.
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doing so has fallen, or because such patents provide larger benefits than
they did in years past, or both.

The most straightforward explanation consistent with our findings
is that legal changes increased the cost effectiveness of software patents
as described in Section 2. Eliminating the subject matter exclusion
and reducing the nonobviousness and enablement requirements may
have made software patents much easier (less costly) to obtain. Patents
with more abstract claims may have had broader scope, increasing the
appropriability each patent delivered. Both served to decrease the cost
of appropriability.31 The timing of these legal changes corresponds to

31. Another possibility is that alternatives to patents became less effective, increasing
the relative cost effectiveness of software patents. But survey evidence suggests that trade
secrecy did not decrease in importance and may have increased (Cohen, Nelson, and
Walsh, 2000). We address changes in the efficacy of copyright protection below.
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the observed increase in the software patent residual—beginning a few
years after the creation of the CAFC and continuing to increase through
the 1990s.

Moreover, strategic patenting may have amplified the effect of
these changes. Reductions in the cost of appropriability may encourage
firms to pursue more aggressive strategic behavior (Bessen, 2003; Hunt,
2006). This may, in turn, induce other firms to engage in defensive
patenting, further increasing the patent propensity. Such behavior might
explain why software patent propensity is highest among the “usual sus-
pect” industries known for strategic patenting.32 In addition, it would
explain why the overall rise in software patent propensity closely tracks
the rise in patent propensity among semiconductor firms. Finally, the
importance of capital intensity is consistent with the strategic patenting
reported in Hall and Ziedonis (2001), as described in Section 4.2.

On the other hand, an explanation based on increased programmer
productivity faces several difficult obstacles. First, there is little in the
IT literature or productivity literature that suggests any awareness of a
large productivity increase. In order to explain the 10% per annum rise in
patent propensity, the productivity increase must have been extremely
large and one would expect that IT professionals and productivity
economists would have been well aware of it. One candidate may be the
wider use of software development tools. Although there was a strong
market for software development tools, the actual contribution of these
tools to productivity is widely debated and studies find that computer-
aided software engineering tools often go unused (Kemerer, 1992). It is
also true that software has been declining in price, but the BEA attributes
most of the estimated price decline to growth in the market for software
driven by rapidly falling prices for complementary computer hardware
(Grimm and Parker, 2000, p. 6), not to greater programmer productivity.

Nevertheless, to test for the possibility that the trend in software
patent propensity can be attributed to a persistent increase in pro-
ductivity growth among programmers, we added to our fixed effects
specification in Column 5 of Table V an interaction of the industry
employment share of programmers with a dummy for years after 1991.
The coefficient on this term is positive and statistically significant.33 But
the effect on the unexplained trend in software patent propensity is
small; it falls to 9.5% a year from 10.8% reported in Table V.

We conclude that an account based on legal changes and strate-
gic patenting provides a parsimonious explanation for the patterns

32. Again we are referring to firms in SICs 35, 36, and 38.
33. The coefficient is 3.7 (0.20). The coefficient on the employment share of program-

mers falls to 4.9 (0.89). We also included a similar interaction for the employment share of
engineers, but it was not statistically significant.
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observed in the data. Improvements in software developer productivity
might also have played a role, but it explains relatively little of the rise
in software patent propensity over time.

4.3.3 The Ebb and Flow of Copyright Protection
Another legal factor that might explain the large increase in software
patent propensity is diminishing protection for computer programs
provided by copyright (see Graham and Mowery, 2003). Lemley and
O’Brien (1997) describe the rise and fall of the “nonliteral infringement”
doctrine. Established in the 1986 decision in Whelan Associates v. Jaslow
Dental Laboratories, it gave copyright holders some protection over the
features of their software programs. But the doctrine was rejected in the
1992 decision in Computer Associates International v. Altai.34

It is possible that the changing extent of copyright protection
might explain the rise in software patent propensity. We informally
interviewed several practicing IP attorneys who suggested that al-
though Whelan may have led more firms to push for expanded patent
protection of software, they did not think that copyright concerns had
much influence on patenting behavior because a firm could obtain both
copyrights and patents on its software. Nevertheless, copyright may
have had some effect at the margin, that is, for software inventions that
were just marginally worth patenting.

If the alternative of copyright protection substantially affected
firms’ propensity to obtain patents, then one might expect a decrease in
patent propensity after 1986, less growth between 1986 and 1992, and
then an increased growth rate after 1992. No significant fluctuation is
observed in Figure 1. To test this further, Table VI shows regressions
using the fixed effects specification of Table V, Column 5. We have
replaced the year dummies with a time trend and we interacted the time
trend with a dummy variable that is one from 1986 through 1992. We also
repeat this regression from 1984–1997 without the employment share
data. We do find a statistically significant lower rate of patent propensity
growth during the Whelan period in both specifications. However, the
effect is not economically very significant, amounting to less than 5% of
the trend rate of growth. This is consistent with the interpretation that
copyright concerns may have exerted an influence on software patenting
at the margin, but that this is not a major explanatory factor. Finally, note
that the industries that patent most heavily also tend to use embedded
software, so copyright protection was less relevant to them.

34. 797 F.2d 1222 (3rd Cir 1986) and 982 F.2d 693 (2d Cir 1992), respectively.
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Table VI.

Test for a Break 1986–92 (Dependent Variable:
Annual Number of Successful Software Patents

Applications)

1 2

Ln employment 0.57 (0.02)∗ 0.44 (0.01)∗
Ln R&D/emp. 0.21 (0.02)∗ 0.23 (0.02)∗
No R&D dummy 0.32 (0.11)∗ 0.04 (0.09)
Ln Capital/emp. 0.35 (0.03)∗ 0.24 (0.02)∗
Programmers/emp. 11.75 (0.68)∗
Engineers/emp. 10.77 (0.51)∗
Year 0.047 (0.004)∗ 0.108 (0.002)∗
Year ∗ (86 ≤ year ≤ 92) −0.002 (0.000)∗ −0.001(0.000)∗

Period estimated 87–97 84–97
No. observations 6,587 8,692
Log likelihood −10,094 −13,221

Note: Heteroscedastic-consistent standard errors in parentheses. Asterisk indicates significance at the 1% level.
Regressions are Poisson regressions. All regressions are Poisson regressions with firm fixed effects (Hausman, Hall,
and Griliches, 1984). R&D is deflated by the GDP deflator, capital is property, plant, and equipment deflated by the
NIPA capital goods deflator, and employment is in thousands.

5. Conclusion

This paper documents a dramatic increase in software patenting, and
software patent propensity, over time. Much of this growth cannot
be explained by growth in aggregate investment in software, R&D,
employment of computer programmers or engineers, or growth in
the productivity of writing new programs. The timing of the surge in
software patenting is consistent with many legal changes that have made
these patents easier to obtain. In short, it appears that software patents
have become relatively more cost effective over time.

The rapid growth in software patents and software patent propen-
sity is not a phenomenon dominated by the software publishing
industry. In fact, it occurs primarily among a group of industries,
including computers, electronics, and instruments. Other researchers
have established the role of strategic patenting in these industries and
strategic patenting does provide a parsimonious explanation for many
of our results. According to this theory, software patents are significant
because they provide a cost effective way for firms to build strategic
patent portfolios. If this interpretation is correct, the growth in software
patents may not be associated with an improvement in the incentives to
innovate, particularly in the “usual suspect” industries. But this remains
a topic for future research.35

35. We provide some preliminary indications in our working paper of the same name
(Bessen and Hunt, 2004) and we continue to develop those results.
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Appendix: Search Algorithm

The search query used is:

((“software” in specification) OR (“computer” AND “program” in
specification))

AND (utility patent excluding reissues)

ANDNOT (“chip” OR “semiconductor” OR “bus” OR “circuit” OR
“circuitry” in title) ANDNOT (“antigen” OR “antigenic” OR “chro-
matography” in specification)

Table AI.

Summary Statistics

Total R&D
Table V Sample Performing Sample

Mean Median Mean Median

Annual successful patent applications 25.9 1
Software patent applications 3.6 0
Firm sales (mill. $96) 2,632.7 375.1 1,032.0 41.6
Firm R&D (mill. $96) 100.2 11.7 36.8 2.8
Percent not reporting R&D 27.9% –
Firm employees (1000s) 13.3 2.4
Percent new firms 10.0% 37.2%
No. of observations 13,136 28,581
No. of firms 1,443 4,559

Note: The total R&D sample corresponding to Table V consists of all Compustat observations for US firms with
nonmissing R&D. Sales and R&D are deflated using the GDP deflator. New firms are firms during the first five years
in which they appeared in Compustat.

Table AII.

Validation Tests of Software Patent Selection

Software Patent Selection Method

Test Sample Bessen–Hunt (%) Graham–Mowery (%)

Power∗

Bessen–Hunt 1996–98 78 26
Allison 92 46

Continued
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Table AII.

continued

Software Patent Selection Method

Test Sample Bessen–Hunt (%) Graham–Mowery (%)

Accuracy∗∗
Bessen–Hunt 1996–98 16 30
Bessen–Hunt 1980–89 9

∗Percent of patents identified as software patents via manual examination correctly identified as a software patent by
the selection method.
∗∗Percent of patents identified as software patents by selection method that are not software patents, based on manual
examination of the patents.
The Bessen–Hunt 1996–98 test sample consists of 400 randomly selected patents from those years, of which 50 were
identified as software patents, but 54 were true software patents. The Bessen–Hunt 1980–89 sample consists of 100
randomly selected patents that were selected as software patents by our algorithm. The Allison test sample consists of
330 software patents identified by John Allison (Allison and Lemley, 2000; Allison and Tiller, 2003). Allison read each
patent, identifying these as patents claiming steps involving logic processing.

Table AIII.

Industry Distribution of Software Patents Using
Graham–Mowery Definition

Bessen–Hunt Software Graham–Mowery
Patents (Table 4.1) (%) Software Patents (%)

Manufacturing 75 73
Chemicals (SIC 28) 5 3
Machinery (SIC 35) 24 26
Electronics (SIC 36) 28 33
Instruments (SIC 38) 9 6
Other manu. 9 4

Nonmanufacturing 25 27
Software publishers (SIC 7372) 5 5
Other software (SIC 737 exc. 7372, IBM) 2 2
Other nonmanufacturing 4 2

Addendum: IBM 6 12

See notes accompanying Table IV.
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