
Boston University School of Law Boston University School of Law

Scholarly Commons at Boston University School of Law Scholarly Commons at Boston University School of Law

Faculty Scholarship

2006

An Essay on the Challenges of Drafting a Uniform Law of An Essay on the Challenges of Drafting a Uniform Law of

Software Contracting Software Contracting

Maureen A. O'Rourke
Boston University School of Law

Follow this and additional works at: https://scholarship.law.bu.edu/faculty_scholarship

 Part of the Contracts Commons

Recommended Citation Recommended Citation
Maureen A. O'Rourke, An Essay on the Challenges of Drafting a Uniform Law of Software Contracting , in
10 Lewis & Clark Law Review 925 (2006).
Available at: https://scholarship.law.bu.edu/faculty_scholarship/1552

This Article is brought to you for free and open access by
Scholarly Commons at Boston University School of Law.
It has been accepted for inclusion in Faculty Scholarship
by an authorized administrator of Scholarly Commons at
Boston University School of Law. For more information,
please contact lawlessa@bu.edu.

https://scholarship.law.bu.edu/
https://scholarship.law.bu.edu/faculty_scholarship
https://scholarship.law.bu.edu/faculty_scholarship?utm_source=scholarship.law.bu.edu%2Ffaculty_scholarship%2F1552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/591?utm_source=scholarship.law.bu.edu%2Ffaculty_scholarship%2F1552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.law.bu.edu/faculty_scholarship/1552?utm_source=scholarship.law.bu.edu%2Ffaculty_scholarship%2F1552&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lawlessa@bu.edu

925

ESSAY

AN ESSAY ON THE CHALLENGES OF DRAFTING A UNIFORM
LAW OF SOFTWARE CONTRACTING

by
Maureen A. O’Rourke*

This Essay, originally presented at Lewis & Clark Law School’s 2006
Distinguished Intellectual Property Visitor lecture, discusses the challenges
involved in developing a uniform law of software contracting. Technology and the
law have developed since 1995, when the first efforts to codify such a law began.
These earlier efforts were largely unsuccessful, and substantial uncertainty still
exists in transactions involving software. In this Essay, Dean O’Rourke discusses
the American Law Institute’s Principles project that seeks to identify approaches
courts could use in adjudicating disputes involving software agreements. The
challenges of developing the Principles include the same theoretical, practical and
political issues that destined other efforts to disappointment. By incorporating
lessons learned from the earlier efforts, Dean O’Rourke hopes that the Principles
project will prove more successful.

I. INTRODUCTION...926
II. SOME HISTORY..927
 A. The Industry...927
 B. The Law ...928
III. FROM UCC 2B TO UCITA ...929
IV. THE PRINCIPLES OF SOFTWARE CONTRACTING..........................930
 A. Scope ...930
 B. Substantive Rules: Some Examples ...932
V. CONCLUSION ...934

* Dean, Professor of Law, and Michaels Faculty Research Scholar, Boston University School
of Law. Thanks to Interim Dean Lydia Loren and Professor Joseph Miller for their invitation
to visit Lewis & Clark as the Distinguished Intellectual Property Visitor in March 2006 and
to Elena Cappella, Professor Bob Hillman and Professor Lance Liebman for comments. The
author is the Associate Reporter on the ALI’s Principles of Software Contracting project.
Professor Bob Hillman is the Reporter. The opinions expressed herein are the author’s alone
and do not represent the positions of either Professor Hillman or the ALI.

926 LEWIS & CLARK LAW REVIEW [Vol. 10:4

 I. INTRODUCTION

In 1995, the National Conference of Commissioners on Uniform State
Laws (NCCUSL) and the American Law Institute (ALI) agreed on the
desirability of undertaking the drafting of a new Article 2B on Licensing of
Information for addition to the Uniform Commercial Code (UCC).1 By 1999,
however, the two organizations had agreed that the subject was not sufficiently
developed for codification within the UCC and the joint Article 2B project was
ended.2 Thereafter, NCCUSL, believing that a standalone enactment would be
both preferable and achievable, continued work on the draft and eventually
promulgated the Uniform Computer Information Transactions Act (UCITA).3
To date, Maryland and Virginia have enacted UCITA, while some other states
have adopted so-called “bomb shelter” legislation.4 Such laws provide that
courts in the enacting states may not enforce a contractual choice of law
provision that selects a state in which UCITA is the governing law.5

With UCITA not gaining universal acceptance and software only
increasing in economic importance, the ALI decided to begin a “Principles”
project. In the ALI’s framework, a Principles project does not set forth settled
law like a Restatement project generally would. Instead, it seeks to state basic
principles supporting the law in a particular field, identifying approaches that
courts could use and incorporate into the common law.

Yet this Principles project inevitably faces many of the same challenges
that destined other efforts to disappointment. These challenges span a number
of substantive issues and are theoretical, practical, and political in nature. In
this Essay, I discuss the difficulties of drafting Principles of software
contracting and how the history of earlier efforts will continue to influence the
shape of the project. I begin by situating the debate within the context of the
history of both the software industry and the law. I then turn to the ALI project
and discuss how that history can help provide guidance in particular areas in
the hopes of completing a project that proves useful to courts and withstands
the pace of technological change.

1 See Charles Cheatham et al., Report on the Uniform Computer Information

Transactions Act (UCITA), 57 CONSUMER FIN. L. Q. REP. 37, 37 (2003) (noting that
NCCUSL set up an Article 2B drafting committee in 1995 and that the committee first met
in 1996). The UCC is a unique project because addition or modification to it requires the
consent of both NCCUSL and the ALI. Thus, when the ALI decided it no longer wished to
participate in the drafting of Article 2B, that proposal could not become a part of the UCC.

2 Pratik A. Shah, The Uniform Computer Information Transactions Act, 15 BERKELEY
TECH. L.J. 85, 88 (2000).

3 Cheatham et al., supra note 1, at 37–38. (describing the promulgation of UCITA and
also noting that its committee adopted a number of amendments to the Act in 2002).

4 Id.; see also Jean Braucher, Uniform Computer Information Transactions Act
(UCITA): Objections from the Consumer Perspective, CYBERSPACE LAW. Sept. 2000, at 2, 3.
(noting Iowa’s adoption of bomb shelter legislation).

5 Braucher, supra note 4, at 3.

2006] A UNIFORM LAW OF SOFTWARE CONTRACTING 927

II. SOME HISTORY6

A. The Industry

The software industry developed relatively recently. In fact, the first
computer manufacturers took some time to understand fully the value of
software. Early manufacturers marketed large mainframe computers. They
generally marketed software and hardware as one package, viewing software
not so much as a source of profit on its own, but rather as a necessity that made
the highly profitable hardware more salable. These manufacturers, including
IBM, provided their customers with the operating system and tools to write
their own applications. They also even encouraged customers to share their
software solutions with each other.

In this early environment, transactions were few in number—if not
necessarily in absolute terms, then certainly relative to the number of software
transfers that occur in the modern networked world. Since a small number of
businesses could afford to finance the purchase of a mainframe, manufacturers
could rely on traditional contract law to safeguard their ownership interest in
the software’s source and object code. The model of contracting resembled that
of classical contract law—an arms-length negotiated, signed agreement
between informed parties of reasonably equal bargaining power. Usually,
manufacturers would provide only object code to customers, safeguarding the
source code as a trade secret.

Over time, companies emerged that marketed software as a product in its
own right rather than bundled with the hardware. These companies could offer
solutions to customers who could not afford to set up their own development
departments to use the application writing tools provided by the hardware
manufacturer. Eventually, in the late 1960s, IBM unbundled the software and
hardware, charging separately for each. This effectively expanded the market
for independent software vendors who could offer varied solutions, including
those that competed with IBM’s.

The introduction of the personal computer and other devices like game
consoles opened up vast opportunities for software developers. These were
enhanced over time as software powered more and more devices and the
Internet emerged as a medium through which all types of digital information,
including software, could be easily transferred. Software became a
standardized, mass-marketed commodity, quite a departure from the early days
when it was often customized to meet the needs of particular customers. The
manner of contracting also changed. With the growth of a mass-market, the
ability to negotiate in the classical manner necessarily dissipated. Mass-market
software today is provided under standard forms that are not negotiated,

6 See generally Maureen A. O’Rourke, The Story of Diamond v. Diehr: Toward

Patenting Software, in INTELLECTUAL PROPERTY STORIES 194 (2006) and sources cited
therein.

928 LEWIS & CLARK LAW REVIEW [Vol. 10:4

certainly not signed, and often great bargaining inequality exists between the
software’s provider and its customer.

B. The Law

As the industry itself developed, so too did the law. While contract and
trade secrecy law might suffice in a world of few customers and negotiated
agreements, this system was never ideal even in that context. Contract, with its
privity limitations, would give the software developer rights only against its
contracting party, not against the world. Trade secret law does not protect
against another’s independent development of the secret, and it also would not
protect against a third party’s unwittingly coming into possession of the secret.
When production and distribution of software expanded, it became even more
critical for software vendors to find protection that would augment what
contract and trade secrecy law would offer.

Software vendors looked to intellectual property law, a natural source of
protection of which trade secret law is a part. Initially, because of a
longstanding (ostensibly judicially-created) bar against patenting algorithms
and the Patent & Trademark Office’s hostility towards patenting software, most
software vendors did not believe software to be patentable subject matter. At
the same time, they had doubts about its copyrightability as well. As a product
that performed a function, it seemed unlike the creative, artistic works that one
usually associates with copyright. Some worried particularly that copyright law
would not protect object code, readable only by a machine and conveying
nothing to a human audience, or operating systems which functioned primarily
to direct the computer’s operation. Additionally, at the time, the copyright law
required a deposit of the work as a condition of protection. Software developers
were leery about providing copies of the source code to the Copyright Office,
fearing loss of their trade secrets in return for uncertain copyright protection.
The Copyright Office began accepting registrations under its “Rule of Doubt”:
The registrant could deposit object code and receive a registration indicating
that the Office could not determine whether copyrightable authorship existed.

By the mid-1980s, judicial decisions established the copyrightability of
both source and object code and operating systems and applications.7 The
remaining question was whether copyright law would protect not just the literal
code but also its structure. Originally, by analogizing to copyright law’s
protection of the plot of a novel, courts answered that question in the
affirmative, granting broad protection to the organization of the program.8

7 See Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240 (3d Cir. 1983)

(copyrightability of operating systems); Williams Elecs., Inc. v. Artic Int’l, Inc., 685 F.2d
870 (3d Cir. 1982) (copyrightability of object code).

8 See Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1234 (3d Cir.
1986).

2006] A UNIFORM LAW OF SOFTWARE CONTRACTING 929

However, by 1992 the Second Circuit reached essentially the opposite result in
a decision that provided very little protection for a program’s structure.9

At the same time, the legal debate over the permissibility and desirability
of patenting software continued.10 Finally, by 1998 it became clear that at least
the Federal Circuit believes that patent protection can apply to aspects of
software.11

Against this backdrop of legal uncertainty and evolution, vendors
continued to rely on contract. Contract could provide insurance should a court
interpret the extent of intellectual property protection to be less than what the
vendor anticipated under its own reading of the law. Additionally, sometimes
the vendor might consider the rights offered by intellectual property law
inadequate. Contract is also quite useful in addressing important issues other
than rights in the program itself: warranties, limitations on liability and choice
of law in case of a dispute, to name a few. As noted above, as the industry
became characterized by mass-marketed software distributed by independent
software vendors as well as some hardware manufacturers, vendors used a
contracting model dramatically different from that employed at the industry’s
origins and certainly dramatically different from that envisioned by classical
contract law.

Specifically, vendors used the shrinkwrap. We are all now quite familiar
with this method of contracting, whether in its original form or in its high-tech
incarnations as a clickwrap or browsewrap. Although standard form contracts
are ubiquitous in many areas, the combination of the standard form, mass
market, and subject matter protected by federal intellectual property law gave
legal commentators pause. Additionally, the need for debate about the
appropriate “default” terms for such matters as warranties and limitation of
remedies seemed apparent. The time had thus come for some sort of legal effort
to rationalize the law applicable to software contracting.

III. FROM UCC 2B TO UCITA

One question that emerged early in lawmaking efforts regarding software
contracts was how to integrate emerging precedent in the software context, as
well as rules that commentators regarded as desirable, into existing law. The
shorthand for this discussion became the “hub and spoke debate.”12 Options
included: (i) taking all of the provisions common to sales of goods, leases of
personal property and licenses of information and putting them into a “hub”
with the “spokes” consisting of rules unique to each context; or (ii) a separate

9 Computer Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 706–11 (2d Cir. 1992)
(setting forth an abstraction-filtration-comparison analysis and test for non-literal
infringement of computer programs).

10 See generally O’Rourke, supra note 6, at 203–18 (discussing the evolution of patent
protection for software).

11 See State St. Bank & Trust Co. v. Signature Fin. Group, Inc., 149 F.3d 1368, 1373
(Fed. Cir. 1998).

12 See Amelia H. Boss, Taking UCITA on the Road: What Lessons Have We Learned?,
7 ROGER WILLIAMS U. L. REV. 167, 172–73 (2001) (describing the hub and spoke debate).

930 LEWIS & CLARK LAW REVIEW [Vol. 10:4

UCC article on licensing of information that, while addressing many issues
similar to those dealt with in Article 2 on the sale of goods, would nevertheless
stand on its own.

Eventually, the second option prevailed and a drafting committee began
work on UCC Article 2B. The UCC is a unique cooperative effort between
NCCUSL and the ALI, and changes to it require the consent of both
organizations. Thus, for Article 2B to succeed, it had to attract support from
both organizations.

Work on UCC Article 2B continued for a number of years. Eventually,
however, NCCUSL and the ALI essentially agreed that the initial decision to
incorporate rules on transactions in computer information into the UCC was
misguided. They stated simply that it had “become apparent that th[e] area [of
computer information transactions] does not presently allow the sort of
codification that is represented by the Uniform Commercial Code.”13 NCCUSL
and the ALI thus parted ways and NCCUSL continued its work under the new
rubric of UCITA.

Matters, of course, were somewhat more complex than the organizations’
politic public statement. In fact, the Article 2B project had become enormously
controversial, attracting the wrath of groups as diverse as the movie industry
and consumer protection groups. Commentators strongly disagreed about such
basic matters as scope and permissible means of contract formation, as well as
about what rules should be adopted in new areas like electronic self-help.

NCCUSL worked for a time on UCITA, making a number of changes in
response to the comments and criticisms of a variety of groups. It eventually
promulgated UCITA, and, as noted above, Maryland and Virginia adopted the
Act while other states enacted legislation preventing courts in their jurisdictions
from using UCITA as the rule of decision.

IV. THE PRINCIPLES OF SOFTWARE CONTRACTING

Against this backdrop, the ALI began a Principles project in the area of
software contracting. The lessons of the two prior efforts—UCC Article 2B and
UCITA—necessarily inform the Principles’ drafting. In this section, I discuss
how the earlier projects highlighted just some of the theoretical, practical, and
political problems that any effort to state rules on software contracting faces. I
also discuss the approach to certain issues that we have taken in the Principles
as currently drafted and how history informs our perspective.

A. Scope

The initial question that all three efforts necessarily faced was how to
define to what the draft law would apply. This is a difficult theoretical issue. It

13 Press Release, Nat’l Conference of Comm’rs of Unif. State Laws Inst., NCCUSL to

Promulgate Freestanding Uniform Computer Information Transactions Act: ALI and
NCCUSL Announce that Legal Rules for Computer Information Will Not Be Part of UCC
(April 7, 1999), http://www.law.upenn.edu/bll/ulc/ucita/2brel.htm.

2006] A UNIFORM LAW OF SOFTWARE CONTRACTING 931

requires analyzing whether there is some set of subject matter that raises issues
not adequately addressed by current law. Both Article 2B and UCITA had a
relatively large scope—Article 2B began by applying to transactions in
information but the drafters later narrowed it to apply to computer information
transactions, and UCITA adopted the same scope. Computer information
transactions were defined as, essentially, transactions involving information in
electronic form which is obtained from or through the use of a computer or
which is in a form capable of being processed by a computer.14

As technology evolved, however, it became clear that this definition could
encompass all digital information, whether its eventual embodiment was as
text, software, music, a motion picture, or something else. The music and
motion picture industries particularly had devised a complex web of contracts
based on the Copyright Act’s statutory scheme. The major players in these
industries had come to expect and rely on these contracts. Thus, they saw no
need for a uniform enactment that could upset settled expectations. Although
UCITA eventually excluded motion pictures and musical works from its
scope,15 the evolution of its scope provisions highlighted at least two issues: (i)
any enactment must consider how advances in technology may affect its scope;
and (ii) scope cannot be divorced from theory—there must be some unifying
principle behind the subject matter that makes inclusion of it within a uniform
law sensible.

The strategy chosen in the Principles is to identify the transactions giving
rise to disputes and litigation because they do not fit well within existing law
and to address them in a technology-neutral way.16 Software is rather unique in
its blend of the expressive and the utilitarian, and this dual status has raised
questions in intellectual property law for some time. Its production requires a
great deal of investment, but the end product can be easily copied in the
absence of technological protection measures. Unlike music that is also
distributed digitally, software has not been the subject of detailed subject matter
specific legislation. Software also is often part of a networked architecture,
unlike music or motion pictures.

For a blend of theoretical, practical, and political reasons then, the project
limits its scope to the exchange of software for consideration. Theoretically,
software occupies a unique niche that warrants separate legal treatment, or at
least clarification. Practically and politically, by narrowing the scope of the
Principles vis-à-vis UCITA, the project avoids the necessity of creating
industry-specific carve-outs that add complexity to the effort. Yet, the
Principles leave open the possibility for a court to apply them by analogy to
matters outside their scope. For example, although digital databases are often

14 UCC § 2B-102(a)(8)–(9) (1999), available at http://www.law.upenn.edu/bll/ulc/

ucc2b/2b299.htm; UCITA § 102(a)(10)–(11) (2002), available at http://www.law.upenn.edu/
bll/ulc/ucita/2002final.htm.

15 UCITA § 103(d) (2002), available at http://www.law.upenn.edu/bll/ulc/ucita/
2002final.htm.

16 See PRINCIPLES OF THE LAW OF SOFTWARE CONTRACTS 12–18 (ALI, Preliminary
Draft No. 2, 2005) for a discussion of Scope. The text here is derived from that section.

932 LEWIS & CLARK LAW REVIEW [Vol. 10:4

marketed through the same distribution channels and contracting methods as
software, they are excluded from the Principles—they share only some of the
characteristics of software that justify its separate treatment. However, a court
might opt to apply the Principles by analogy to questions common to both
subject matter.

Even with this scope that is narrower than UCITA, the Principles are likely
to face one issue with significant political overtones—the treatment of open
source software. Open source providers offer their code under a variety of
terms, often requiring the recipient to agree to distribute derivative software
under the same terms as the initial transfer. This condition is more than what is
necessary to constitute a gift and thus is consideration under contract law. Open
source advocates generally bridle at labeling their terms a “contract.” They
prefer to style them instead as copyright permissions, perhaps to avoid
questions of enforceability. Open source is included under the Principles so
long as the transfer is one for consideration as that term is defined under
traditional contract law. The challenge going forward will be to develop
exceptions to general rules, where appropriate, for open source and also to
attract the support of open source providers.

B. Substantive Rules: Some Examples

In the area of substance, one question the Principles must answer harkens
back to the hub and spoke debate. What approach should the Principles take in
areas in which existing law seems sufficient? For example, courts have a great
deal of experience with unconscionability, and changing its language might
introduce unintended consequences. Yet unconscionability may have an
important role to play in policing over-reaching terms in software agreements.
In such cases, we have opted to repeat existing law and to try to provide
guidance in the comments with reference to practices particular to software. For
example, some standard form contracts applicable to generally available
software prohibit the practice of benchmarking. Such a term may be
unenforceable because unconscionable. This approach, along with the relatively
narrow scope, makes the Principles less complex than UCITA and avoids
tinkering with settled law.

In some cases, however, “settled” law might benefit from some
clarification or change. For example, while mass marketing using standard
forms is not unique to software, it may prove useful to state rules in that context
that courts could opt to use for subject matter other than software.

We take this approach in some areas, including, for example, choice of
law. Generally, the law in that area is settled, with courts using the standards of
the Restatement (Second) of Conflict of Laws or Article 1-105 of the UCC.
There is now, though, some risk of disharmony in UCC transactions. The most
recent version of Article 1 departs from the former “reasonable relationship”
test and grants the parties broad freedom to choose the governing law. To date,
however, states adopting Revised Article 1 have retained the traditional test.

In any event, the usual tests do not distinguish between standard form and
negotiated contracts. The choice of law clauses in the former have been the

2006] A UNIFORM LAW OF SOFTWARE CONTRACTING 933

subject of frequent litigation in software contracts. Thus, we chose to draft a
section on choice of law to set rules for standard form transfers of generally
available software.17 We adopt the reasonable relationship test with which
courts are familiar, but limit application of the chosen law where it would be
manifestly contrary to public policy expressed in the law of the jurisdiction that
would otherwise govern in the absence of a choice of law provision. The notion
is to acknowledge the special problems raised by standard form contracts and to
provide protection to both consumers and businesses who buy software under a
standard form.

There is nothing about the issue, however, that is unique to software. Thus,
the choice of law provision might usefully be adapted to the standard form
contract setting generally, should a court choose to do so.

Finally, in some cases, there is no settled law to clarify or modify. Two
cases in point are federal preemption and electronic self-help.

Although there is, in fact, a fair amount of copyright and patent
preemption law, it is quite confusing, and makes it difficult to extract consistent
principles. Software agreements bring the preemption issue to the fore because
they, perhaps more than other contracts, routinely contain provisions that seek
to broaden intellectual property rights, either by granting rights the relevant
statute does not provide or by shrinking the limitations on rights that are
provided by the statute. Adding to the complexity, software can be both
patented and copyrighted, making two bodies of preemption law relevant.

Indeed, Article 2B and UCITA both had great difficulty addressing the
intersection between state contract law and federal intellectual property law. In
fact, that relationship became one of the most contentious issues in drafting
UCITA. Eventually, the drafters settled on two relevant provisions: (i) Section
105 (a) which provides, “A provision of this [Act] which is preempted by
federal law is unenforceable to the extent of the preemption”; and (ii) Section
118 which permits reverse engineering for certain limited purposes despite a
contractual provision to the contrary.18

Section 105, of course, states the obvious and adds nothing to the law
already applicable. Section 118 adopts the view of some copyright cases that
had permitted reverse engineering to uncover unprotected elements of the
software.

We hope to provide more guidance than Section 105 but stop short of a
blanket right to ignore a ban against reverse engineering in a software
agreement. This approach runs the risk of alienating the interest groups that
lobbied for the reverse engineering exception but has the virtues of consistency
with current law and providing flexibility to courts. Our preemption section has

 17 We define “standard-form transfer of generally available software” as a transfer of
“(1) small quantities of software to an end user; or (2) the right to access software to a small
number of end users; if the software is generally available to the public under substantially
the same standard terms.” PRINCIPLES OF THE LAW OF SOFTWARE CONTRACTS 12 (ALI,
Preliminary Draft No. 3, 2006).

18 UCITA §§ 105, 118 (2002), available at http://www.law.upenn.edu/bll/ulc/ucita/
2002final.htm.

934 LEWIS & CLARK LAW REVIEW [Vol. 10:4

focused on stating the law at a high level and providing expansive comments to
provide courts with factors to evaluate in deciding whether or not to enforce a
particular contractual provision.

The issue of electronic self-help differs from that of preemption because
there is little law on the subject. Like preemption, however, it was extremely
contentious in the UCITA discussions. The 1999 draft of UCITA permitted
electronic self-help under limited circumstances and provided safeguards for
the party against whom the self-help would be exercised. Many continued
vehemently to oppose electronic self-help under any conditions and the 2002
version of UCITA prohibits it.

The Principles attempt to strike a compromise, permitting electronic self-
help in a non-standard form, non-consumer transfer, but providing more
extensive protection than the 1999 draft of UCITA. This honors the principle of
freedom of contract but also provides consumer protection, a key concern of
those opposed to UCITA.

V. CONCLUSION

Technology and the law have developed since 1995 when the first efforts
to codify a uniform law with respect to computer information transactions
began in earnest. Nevertheless, substantial uncertainty still characterizes
aspects of transactions involving software. The ALI’s Principles project hopes
to dispel some of that uncertainty.

The Principles project has learned a great deal from the Article 2B and
UCITA experience. The history of those efforts has influenced the scope of the
still-evolving project and the manner in which we address certain issues. This
does not guarantee the project’s ultimate success but it provides some hope that
we may draft reasonable rules that courts may choose to adopt.

	An Essay on the Challenges of Drafting a Uniform Law of Software Contracting
	Recommended Citation

	Microsoft Word - LCB_10_4_ORourke.doc

