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Abstract:  

This paper argues that automation both complements and replaces workers. Extending the 

Acemoglu-Restrepo model of automation to consider labor quality, we obtain a Remainder 

Effect: while automation displaces labor on some tasks, it raises the returns to skill on 

remaining tasks across skill groups. This effect increases between-firm pay inequality while 

labor displacement affects within-firm inequality. Using job ad data, we find firm adoption 

of information technologies leads to both greater demand for diverse skills and higher pay 

across skill groups. This accounts for most of the sorting of skills to high paying firms that is 

central to rising inequality. 
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Introduction 

The skill-biased technical change (SBTC) hypothesis holds that technology 

complements some groups of workers. In contrast, recent economic models of automation 

posit that automation technologies strictly substitute machines for workers.1 Labor 

displacement is seen by some as the main source of growing economic inequality over the 

last four decades (Acemoglu and Restrepo 2021), leading to calls for redistribution (Korinek 

and Stiglitz 2018; Benzell et al. 2016) or policies to slow the growth of automation with 

economic incentives or attempts to influence development engineers (Acemoglu 2021; 

Brynjolfsson 2021). 

Yet some observers have noted that automation may also complement labor in 

important ways (Autor 2015; Bessen 2015). By definition, automation replaces humans with 

machines on certain tasks. But automation could, at the same time, complement workers on 

other tasks. This paper presents a model explaining why and how such synergy might occur 

and empirical evidence that it does occur. The result is a much richer picture of automation 

that is both cost-reducing and quality-improving, that replaces workers but also increases the 

demand for diverse skills in a broad range of occupations. 

This depiction is important because it helps explain important features about income 

inequality. Indeed, labor displacement models do not address a key feature of the rise in 

inequality since 1980, namely that it has largely occurred between firms rather than within 

firms.2 Labor displacement affects inequality because it decreases aggregate employment 

demand for some skill groups relative to others, thus leading to growing wage differences in 

equilibrium. But in these models, the market wages of different skill groups affect all firms, 

changing within-firm inequality.3 However, the models can be extended: if automation 

increases the returns to quality on non-automated tasks, then automating firms might pay 

more than others and hire higher quality workers, thus increasing sorting. 

 

1 (Autor, Levy, and Murnane 2003; Acemoglu and Autor 2011; Brynjolfsson and McAfee 2014; Acemoglu and 
Restrepo 2018a; 2018c; Benzell et al. 2016; Korinek and Stiglitz 2018; Hémous and Olsen 2022). 

2 (Card, Heining, and Kline 2013; Barth, Davis, and Freeman 2018; Song et al. 2019; Lachowska et al. 2020). 

3 Because firms differ in the extent to which they employ different skill groups, these differences might 
secondarily affect between-firm pay, but only in dilute form. Also, firms might reorganize production in 
response. For instance, Song et al. (2019) argue that coincident outsourcing of low paying jobs might mask the 
extent of within-firm changes. We test for this explanation below. 
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In popular discourse, automation is about reducing costs by cutting labor, not about 

improving quality. But that is not necessarily the case. Automation includes robots that 

replace manual labor, but it also includes productivity tools such as spreadsheets (automating 

the calculation) used by white collar workers or AI tools that automate predictions 

augmenting humans.4 Indeed, researchers have found that advanced technologies are often 

directed more to improving product quality or creating new products with better quality than 

they are to saving cost (Brynjolfsson and Hitt 2000; Bresnahan, Brynjolfsson, and Hitt 2002; 

Bessen et al. 2018; Babina et al. 2020; Hirvonen, Stenhammer, and Tuhkuri 2021). 

Automated machines can spin finer yarn than humans, they can allow machinists and 

surgeons to operate at higher precision, and AI systems can make more accurate predictions.  

Why is quality important for technology? Quality on complementary tasks is critical 

to many production processes. In Kremer’s (1993) famous example, the failure of one part 

doomed the space shuttle Challenger. Poorly performed tasks can create defects, reducing the 

value of output, or they can halt production, slowing the rate of output, or they can reduce 

the reliability of the product. Yet the quality of task performance often depends critically on 

the quality of labor, on the ability of labor to perform specific tasks. Elon Musk’s highly 

automated Tesla factory fell far short of production quotas because, in his words, “humans 

are underrated.” Clark (1987), comparing workers at highly automated textile mills around 

the world, found six-fold differences in output per worker, even comparing workers at 

similar mills using identical equipment and with similar British managers. The differences lay 

in the varied ability and willingness of these workers to perform non-automated tasks 

reliably and quickly (see the example below).  

This means that there are important dimensions to skill beyond educational or 

occupational skill groups and, for this reason, analyzing inequality with skill groups alone is 

inadequate.5 In our model, the quality of task output depends on the specific skill or effort of 

 

4 And although robots have featured in recent economic papers, US investment in robots was only $7 billion in 
2019, while investment in software, studied here, was over $400 billion (US Census). 

5 Lindenlaub (2017) argues that multi-dimensional skills are needed to understand the link between sorting and 
technology. It is well-recognized that demographic skill groups are at best crude indices of the actual multiple 
dimensions of skill (Acemoglu 2002, Section 7). Skill groups have other limitations for the analysis of income 
inequality. For one thing, endogenous selection into skill groups, such as changing access to college education, 
means that the actual skills of demographic groups change over time. Technology also changes the skills of 
occupational groups over time (Autor, Levy, and Murnane 2003; Spitz-Oener 2006). Also, there is great and 
changing variance of wages within skill groups (Hunt and Nunn 2019). 
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the worker performing the task. But workers differ in their disutility of expending effort on 

task performance or on learning new skills. Workers with high (low) disutility comprise a low 

(high) skill group—these are the ones likely to get less (more) education, for instance. Hence, 

skill groups defined by education or occupation matter, but so, too, do task-specific skill 

levels. Employers can improve product quality along two margins: by hiring workers from a 

high skill group and by providing them stronger performance incentives. In this paper, we 

measure effects on both skill groups and on task-specific skills. 

To model automation, we extend the Acemoglu-Restrepo model of automation 

(2018a; 2018c) to include variable task quality as modeled by Kremer and Maskin (Kremer 

1993; Kremer and Maskin 1996). Our model provides a natural explanation for the rise in 

sorting of skilled workers to high-paying firms. The model generates a Remainder Effect 

(Bessen 2015): automating some tasks raises the demand for skill and effort on 

complementary non-automated tasks. The relative importance of between-firm and within-

firm wage gaps corresponds to the two margins along which firms manage skill. Between-

firm pay differences are driven by differences in labor quality while within-firm pay 

differences are driven by the relative displacement of different skill groups. This implies that 

the impact of automation on wage inequality—and the policies needed to counter this 

inequality—depend on the relative importance of labor displacement and labor quality 

enhancement. The model also explains why successful implementation of information 

technologies is linked to management practices that provide stronger incentives for 

performance (Bloom, Sadun, and Van Reenen 2012). 

To test the model predictions, we use rich data on the skills that firms demand and 

the pay that they offer in online help wanted ads. The skills requested in job ads allow us to 

identify multiple dimensions of specific skills that employers apparently value as important 

for achieving quality output, for instance, affecting firm market value (D. Deming and Kahn 

2018; Bana 2021). These include education and experience required, measures of cognitive 

and social skills, other soft skills, information technology skills, and skills related to other 

technologies and market knowledge.  

We test how the demands for these skills are related to firm investments in own-

developed software. Firms have been investing heavily in developing information technology 

systems for their own use, including artificial intelligence applications (AI). Self-developed 

and custom software grew to $241 billion in 2020, excluding software developed for use in a 
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product and much of this investment is in systems that automate business processes such as 

enterprise resource planning. Following some literature, we measure the adoption of these 

technologies as the share of software developers in a firm’s total hiring (Tambe and Hitt 

2012; Tambe et al. 2019; Bessen 2020; Harrigan, Reshef, and Toubal 2021). The entire 

investment in these technology platforms includes complementary investments in hardware, 

packaged software, and organizational capabilities.  

We first test whether skills demanded and pay increase when firms make major 

investments in their internal information technology. We identify these episodes as 

substantial increases in relative hiring of software developers, so-called investment “spikes,” 

and we analyze them using a difference-in-differences methodology.6 This method helps 

isolate the effects of technology from many possible confounders and we also add controls 

for outsourcing, labor market conditions, management changes, and productivity and 

demand shocks. Following a software spike, firms increase their demand for skills across all 

categories, both for jobs that require a college education as well as jobs that do not. Firms 

also significantly increase the pay they offer, after controlling for job characteristics, to most 

skill groups, thus increasing between-firm pay differences among new hires.  

Because spiking firms are a select group, this analysis might not reflect the role of 

information technology in sorting more generally. We also look at the relationship between 

investment in own-developed software and the demand for skills in the universe of online 

help wanted ads. We first calculate firm pay fixed effects by regressing salaries offered 

against job and firm characteristics. These fixed effects are correlated with our various skill 

measures, indicating sorting. But firm investment in own-developed software also correlates 

with both the firm fixed effects and skill measures. When software is added to the regression 

of skill against firm fixed effects, the correlations are substantially reduced. Software 

accounts for most of the correlations between firm fixed effects and skills. The prominent 

relationship between information technology and sorting and the relatively recent shift of 

investment to information technology suggests that much of the rise of sorting can be 

accounted for by this technology. 

 

6 A variety of paper have begun using technology spikes and difference-in-differences or event studies to 
analyze technology impacts (Bessen and Righi 2019; Bessen et al. 2022; Humlum 2019; Domini et al. 2021; 
Aghion et al. 2020; Hirvonen, Stenhammer, and Tuhkuri 2021; Rodrigo 2021). 
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To summarize, this paper makes several contributions. First, we develop a model of 

automation that includes both cost reduction and quality enhancement, thus generating a 

richer set of outcomes. The model accounts for automation effects on both within-firm and 

between-firm pay inequality, reflecting the relative extent to which automation substitutes or 

complements workers. This difference provides a tool to estimate the relative importance of 

substitution/complementation and implies different policy choices to counter inequality. 

Second, we study the micro-level impact of proprietary information technology to 

test key aspects of the model. We find that when firms invest in these systems, their demand 

increases for a diverse set of technical, cognitive, and social skills and these demand increases 

occur across skill groups—across jobs requiring a college degree and those that do not, 

across routine jobs as well as nonroutine. Moreover, this increased demand is reflected in 

higher pay offered, after controlling for job characteristics, contributing to growing between-

firm pay differences. While we also find evidence of labor displacement in manual jobs, our 

overall findings differ from predictions of models of pure labor displacement and from 

models of skill-biased technical change. In both the labor displacement and skill-biased 

change stories, technology only affect limited groups of workers; in our story, it affects most 

groups of workers. 

Third, we explore how much of the overall sorting of skilled workers to high-paying 

firms can be accounted for by proprietary information technology systems by looking at the 

correlations between firm fixed effects and skills. We find that the majority of these 

correlations is accounted for by this technology, suggesting that the increase in sorting may 

be closely related to the rise of proprietary information technology. 

Of course, there are important non-technological factors that may contribute to 

sorting including rent-sharing, firm size (Eeckhout and Kircher 2018), search frictions 

(Burdett and Mortensen 1998), and monopsony (see for instance Card et al. 2018). Cortes et 

al. (2020) model sorting arising from skill-biased technical change. In empirical research, 

technology has been associated with between-firm wage differences (M. Doms, Dunne, and 

Troske 1997; Dunne et al. 2004; Barth et al. 2020) and the rise in information technology is 

coincident with the rising importance of sorting to inequality. But little research connects the 

actual adoption of technology with changes in skill demand. Some research has explored the 

effects of the adoption of computers or automation technology on firm wages in difference-
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in-differences or event studies, generally finding a rise in firm pay following adoption.7 

However, the increase in firm pay could arise from rent sharing rather than from greater 

demand for skills. Dillender and Forsythe (2019), in an approach similar to ours, use Burning 

Glass data to identify firm computer technology adoption; they find greater skill demand and 

higher pay for office and administrative support workers, suggesting that this technology is 

labor augmenting. Other papers find that computers or AI change skill demands (Autor, 

Levy, and Murnane 2003; Spitz-Oener 2006; Acemoglu et al. 2020). 

Some studies use worker fixed effects from AKM regressions as a proxy for skill, but 

these might also reflect rents arising from search frictions (Abowd, Kramarz, and Margolis 

1999; Bagger and Lentz 2019). Hakanson et al. (2020) find that worker sorting across firms 

by ability measured using standardized test scores is related to the rising information 

technology sector, but they lack firm-level measures of technology. Deming (2017; see also 

Aghion et al. 2019) finds an association between information technology and soft skills. This 

paper studies firm-level adoption of technology and both the subsequent firm demand for 

specific skills and firm pay offers. 

A historical example 

To fix ideas, it is helpful to look at an example of the Remainder Effect. There is 

sufficient historical data available for mills weaving coarse cotton cloth during the 19 th 

century in the U.S. to construct an engineering production function that specifies the 

weavers’ main tasks, the frequency of their occurrence, typical times to perform those tasks, 

and how those tasks were automated over time (this section draws from Bessen 2003; 2012; 

2015). Although the process was highly automated, humans still had to perform some critical 

tasks. When bobbins ran out of thread, humans replenished them; when the edges of the 

cloth pulled inward as the loom wove, humans straightened them; when threads broke, 

humans had to stop the machines, unravel the defective cloth, fix the break, and restart the 

machines.  

 

7 Gaggl and Wright (2017) find that computers raise wages in small firms, mostly in managerial, professional, 
and technical occupations. Bessen et al. (2022) find that automation raises wages in large firms, but wages 
decline in small firms. Acemoglu, Lelarge, and Restrepo (2020) find that robots raise wages in some 
regressions. Humlum (2019) and Rodrigo (2021) also find that robots increase pay. Graetz and Michaels (2018) 
find a similar increase at the industry level. 
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The productivity of a weaver depended critically on her skill at performing these 

specific tasks and the effort she applied to them. Many tasks were performed while the loom 

was stopped, so the weaver’s speed affected the rate of output. The reliability of weaver’s 

performance determined whether subsequent defects or failures would occur with greater or 

lesser frequency. The weaver’s attentiveness monitoring the looms affected how quickly 

faults could be detected and fixed. And of course, the quality of the weaver’s performance 

also affected the occurrence of defects that reduced the value of the cloth. 

These skills had to be learned on the job. New hires went through a learning process 

that quadrupled their output per hour over the course of a year or so. Treating foregone 

output as a human capital investment (Becker 1993), the human capital of these supposedly 

“unskilled” weavers was substantial, roughly equivalent to the investments in adult male 

tradesmen who went through apprenticeships (the weavers were mainly young women). 

These skills contributed substantially to the rise in productivity over the 19th century. The 

labor time required per yard of cloth fell by 98%. However, analysis using the engineering 

production function shows that new inventions cannot account for all this decrease; about a 

quarter is due, instead, to better quality of labor. 

As automation progressed over the century, many of these tasks were automated and 

no significant new tasks were added in this sector. As weavers performed fewer tasks per 

yard of cloth, they were assigned more looms to tend, so that their skills on these tasks 

remained important for productivity. In fact, their skills became even more important. 

Human capital investments increased (learning curves became steeper) and real pay for 

weavers rose substantially. Automation substantially increased the returns to skill on the 

remaining non-automated tasks. 

Model 

Basic Setup 

Tasks and Automation 

Our model is a combination of cost saving automation models by Acemoglu and 

Restrepo (2018a; 2018c) and models of production quality by Kremer and Maskin (Kremer 
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1993; 1996). We interpret Acemoglu and Restrepo’s model as providing a measure of 

potential output while Kremer’s model relates actual output to potential output, after 

accounting for quality-related failures.  

We use a simplified version of the Cobb-Douglas instance of Acemoglu and 

Restrepo’s model (2018a) with constant returns to scale. Let there be N tasks. We keep the 

number of tasks fixed, ignoring the creation of new tasks, which we discuss further below. 

Because the production function has constant returns to scale, we allow an indefinite 

number of firms. Let the tasks be ordered so that the first 𝐼 tasks are automated and the 

remaining 𝑁 − 𝐼 tasks are performed by labor. The ith automated task uses 𝑘𝑖  capital and 

the jth human task uses 𝑙𝑗 labor. Letting the firm’s total capital 𝐾 = ∑ 𝑘𝑖
𝐼
𝑖=1  and total labor  

𝐿 = ∑ 𝑙𝑖
𝑁
𝑖=𝐼+1 , equilibrium potential output can be written, under some assumptions (see 

Acemoglu and Restrepo 2018a, equation 3), 

𝑉 = 𝐴(𝐼)𝐾𝛼𝐿1−𝛼 ,          𝛼 ≡
𝐼

𝑁
,

𝑑𝐴

𝑑𝐼
> 0. (1) 

where 𝛼 is capital’s share of output and 𝐴(𝐼) is a measure of Hicks-neutral productivity, 

which we assume to be increasing in the number of automated tasks. We assume that 𝐼 is 

exogenously determined by the state of technology. Firms, however, pay a fixed fee to adopt 

the latest technology so that in some circumstances, only more profitable firms choose to 

adopt (for a full model of adoption see Bessen et al. 2022 Appendix). 

Quality 

However, as Kremer (1993) observes, not all potential output is realized if tasks are 

performed imperfectly. In some production functions, failure of a critical task reduces 

output to zero (O-ring); in others, imperfect task output reduces the value of output; in yet 

others, task failures delay production (weaving), reducing the rate of output. The critical 

assumption here is that quality and quantity are not perfect substitutes. If quality and 

quantity were perfect substitutes, then output could simply be measured in quality-adjusted 

units and there would be no need to account for quality separately. However, as Kremer and 

others argue, there are many important instances where this substitution is imperfect, e.g., 

two mediocre surgeons are not equivalent to one surgeon whose patients have twice the 

survival rate (Rosen 1981; Kremer 1993). 
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It is standard in reliability engineering that the probability of failure increases with 

the number of tasks prone to failure. Multiple tasks provide multiple opportunities to fail. 

Let 𝑞𝑖 , 0 ≤ 𝑞𝑖 ≤ 1 be the quality of performance of the ith task at a given scale of 

production. Perfect performance is designated by 𝑞𝑖 = 1 and complete failure by 𝑞𝑖 = 0. 

Then the actual output can be written8 

𝑌 = 𝑄 ∙ 𝑉,      𝑄 ≡ ∏ 𝑞𝑖 .

𝑁

𝑖=1

(2) 

To keep things simple, we assume that machines perform their tasks perfectly,  

𝑞𝑖 = 1, while humans are always at least a bit imperfect.9 For the tasks performed by labor, 

task quality will depend on worker skill or effort. The quality of task production can vary 

with general skills of the workers performing the task, but in many cases, it will surely 

depend on task-specific and technology-specific skills. Without loss of significant generality, 

we assume that workers are assigned to a single task and all workers assigned to a task have 

the same quality. This way worker skills are task specific. The quality of each task performed 

by labor is then 𝑞𝑖 = 𝑓(𝑒𝑖) where 𝑒 is effort per worker, either effort expended on the task 

or effort expended on learning new skills (see below). Then we assign 

𝑞𝑖 = {
1, 𝑖 ≤ 𝐼

𝑓(𝑒𝑖), 𝐼 < 𝑖 ≤ 𝑁
} . (3) 

We assume that 𝑓(𝑒𝑖) is a monotonically increasing, twice-differentiable continuous 

function, 𝑓′ > 0, 𝑓′′ < 0, and lim
𝑒→∞

𝑓(𝑒) < 1 (humans are imperfect).  

Labor Quality 

Workers deliver a fixed amount of labor—there is no tradeoff with leisure time—but 

the quality of that labor varies. In a single-period model it is simplest to represent labor 

quality with a single variable, 𝑒, which we might think of as effort, either expended on the 

 

8 Where q represents a probability of successful completion, then Y is expected output and we assume that 
firms are risk neutral.  

9 A more general model could consider cases where machines have low quality but high efficiency and cases 
where inefficient machines are adopted because they have higher quality. 
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task or expended on learning new skills.10 Given a set of equilibrium prices, each worker’s 

utility can be written as a function of their wage and the effort they exert, 𝑈 = 𝑈(𝑤, 𝑒). Let 

𝑈(𝑤, 𝑒) = 𝑤 − 𝜃𝑗𝑔(𝑒),       𝑔′ > 0, 𝑔′′ > 0, 𝜃𝑗 ≥ 1 

where 𝜃𝑗 represents the jth worker’s disutility of effort. Workers share the same preferences 

except for this disutility parameter.  

Importantly for our analysis, there are two dimensions to labor quality: the worker’s 

type or skill group, 𝜃𝑗, and the actual effort/skill exerted at the worker’s job, 𝑒. We assume 

that employers (but not third parties) can costlessly observe both 𝜃𝑗 and effort 𝑒. Employers 

can then elicit greater or lesser 𝑒 by using greater or smaller performance pay incentives. 

They can also influence the labor quality of their workforces by hiring workers of different 

types, 𝜃𝑗, who will be more or less responsive to those incentives.  

Employers can elicit a desired level of effort by offering a two-part wage, with fixed 

amount 𝑤𝑢 and performance incentive 𝑤𝑠 such that 𝑊 = 𝑤𝑢 + 𝑤𝑠 ∙ 𝑒. Utility maximization 

for the jth worker occurs when 
𝑤𝑠

𝜃𝑗
= 𝑔′(𝑒), yielding a unique level of effort, 𝑒̂(𝑤𝑠 𝜃𝑗⁄ ), and 

the corresponding task quality, 𝑓 (𝑒̂(𝑤𝑠 𝜃𝑗⁄ )). 

It is convenient to invert this function, yielding 

𝑤(𝑞) = 𝑤𝑢 + 𝜃𝑗 ∙ ℎ(𝑞),       ℎ′, ℎ′′ > 0,    lim
𝑞→1

ℎ′(𝑞) = ∞. 

We assume competitive labor markets; firms pay the same wages for the same level of 

effort/skill. Wages differ across firms to the degree that worker effort/skill differs across 

firms. 

Uniform Workers and Firms 

We begin the exposition by presenting our model with uniform workers and firms to 

establish some basic results. Let there be only one type of labor, 𝜃𝑖 ≡ 𝜃 for all i with 

otherwise identical firms. We introduce heterogeneity in the next section. 

 

10 In a multiperiod model, workers may invest time and effort in learning new skills in one period that are used 
in subsequent periods. 
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Equilibrium 

There is a fixed amount of inelastically supplied labor and capital in the aggregate 

economy distributed across firms. With uniform labor and firms, firms receive proportional 

allocations of labor and capital, 𝐿 and 𝐾 in equilibrium. Taking output price as numeraire, 

profits per firm are 

𝜋(𝑞𝐼+1, … , 𝑞𝑁 , 𝑘1, … 𝑘𝐼 , 𝑙𝐼+1, … , 𝑙𝑁; 𝐼)

=  𝐴(𝐼)𝐾𝛼𝐿1−𝛼 ∏ 𝑞𝑖

𝑁

𝑖=𝐼+1

− ∑ 𝑟𝑘𝑖

𝐼

𝑖=1

− ∑ 𝑤(𝑞𝑖)𝑙𝑖

𝑁

𝑖=𝐼+1

,       

where r is the user cost of capital and w is the wage. By the symmetry of the problem, it is 

straightforward to show that 𝑞𝑖 = 𝑞𝑗 , 𝑘𝑖 = 𝑘𝑗 , and 𝑙𝑖 = 𝑙𝑗 in the appropriate range in 

equilibrium. The first order profit maximizing conditions for the three control variables then 

are 

𝑌

𝑞𝑖
− 𝜃ℎ′𝑙𝑖 =

𝑌

𝑁𝑙𝑖
− 𝑤 =

𝑌

𝑁𝑘𝑖
− 𝑟 = 0. (4) 

A useful result can be obtained by taking the implicit derivative from the first order 

maximizing condition for 𝑞𝑖 (keeping the quality of other tasks fixed),  

𝑑𝑞𝑖

𝑑𝐴
=

𝑁𝑤

𝜃𝐴𝑞𝑖ℎ′′(𝑞𝑖)
> 0. (5) 

Thus, increases in productivity will increase the equilibrium quality of output. When 

potential output increases, firms increase incentive pay, workers exert greater effort/skill, 

and total output increases more than potential output. In other words, an increase in 

potential output increases the returns to skill/effort. 

Remainder Effect 

Now consider what happens when the frontier of automated tasks increases from 𝐼 − 1 to 𝐼 

for all firms. Let us assume that the adoption costs of the new technology are negligible so 

that all firms adopt. Productivity, A, increases and, by implication of the lemma above, this 

increase should boost labor quality. Aggregate quality also increases because the machine 

produces with greater quality on task I, that is, 1 > 𝑓(𝑒𝐼). Combined, the effect of 

automation on total output per worker is 
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∆ ln
𝑌

𝐿
= ∆ ln 𝐴 + ∆ ln 𝑄 + 𝛼∆ ln

𝐾

𝐿
 

In this setting, capital and labor will be allocated proportionately across production units in 

equilibrium, so the last term drops out. Then,  

∆ ln
𝑌

𝐿
≈ ∆ ln 𝐴 + (𝑁 − 𝐼)∆ ln 𝐴 ∙

𝑑𝑞

𝑑𝐴
∙

𝐴

𝑞
 − ln 𝑓(𝑒𝐼) . (6) 

The second term represents the remainder effect. Automation boosts the returns to quality, 

increasing equilibrium labor quality. Output increases not only because automation reduces 

the labor cost of production but also because it increases labor quality. The third term is 

positive (since 𝑓 < 1, − ln 𝑓 > 0) and captures the effect of improved quality in the newly 

automated task. 

There is a corresponding change in the wage. Using the first order conditions and 

𝐿 = (𝑁 − 𝐼)𝑙𝑖, the equilibrium wage is 

𝑤 =
𝑁 − 𝐼

𝑁
∙

𝑌

𝐿
.  

Following Acemoglu and Restrepo and using (6), 

∆ ln 𝑤 ≈
𝑑 ln(𝑁 − 𝐼)

𝑑 𝐼
+ ∆ ln

𝑌

𝐿
                                                               (7) 

≈ −
1

𝑁 − 𝐼
 + ∆ ln 𝐴 + (𝑁 − 𝐼)∆ ln 𝐴 ∙

𝑑𝑞

𝑑𝐴
∙

𝐴

𝑞
− ln 𝑓(𝑒𝐼) 

Acemoglu and Restrepo call the first term the “displacement effect” The second term is an 

efficiency effect (Acemoglu and Restrepo call it the “productivity effect”). The third term 

represents the remainder effect and the fourth captures the quality improvement effect. The 

remainder effect multiplies the base productivity effect, making a positive contribution to 

wages. Also, the fourth term implies further possible wage increases. In a more general 

model, this term could possibly be negative—that is, firms might accept inferior quality 

machines if they deliver a large enough efficiency gain. The sign and magnitude of this term 

is an empirical matter. However, the addition of the term highlights an important aspect of 

automation: firms may choose to automate not so much to reduce costs as to provide better 

quality output. To the extent this is true, the effect on wages will tend to be positive. 

Generally, (7) provides reasons beyond Acemoglu and Restrepo why wages might increase. 

To keep things simple, we have used single continuous variables for product and 

labor quality and have kept the number of products and tasks fixed. In a more general 
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setting, both new tasks and new products might be natural outcomes of a growing demand 

for greater quality. For example, as the quality of a task becomes more and more valuable 

with ongoing automation, firms might subdivide that task into two or more new tasks 

allowing workers to develop more specialized skills. Something like that appears to have 

happened during the 19th century (Atack, Margo, and Rhode 2019). Similarly, new products 

might be a form of realizing greater product quality. 

Heterogeneity 

Now let there be two types of workers: high skill, designated “H,” and low skill, 

designated “L,” where 𝜃𝐻 < 𝜃𝐿. The aggregate supply of each type is fixed.  

In general, there are two ways that workers can be assigned to firms: assortative 

matching, where some firms hire more high skill workers and other firms hire more low skill 

workers, and cross-matching, where firms hire a mix of high and low skill workers. A 

theoretical literature identifies a condition under which assortative matching occurs in 

competitive markets (Becker 1981; Sattinger 1975; 1993; Kremer 1993; Kremer and Maskin 

1996), namely a positive cross derivative of output with respect to the qualities of different 

tasks. Our production function meets this criterion (see also Kremer 1993). In the next 

section, we consider a stylized model of sorting where firms hire all high skill workers or all 

low skill workers. 

Kremer and Maskin (1996) show that with a slightly different production function, 

firms will, instead, cross-match under some conditions, hiring both high and low skill 

workers. This occurs when productivity is more sensitive to some tasks than others. Let us 

divide tasks into two groups: tasks in the range 𝐼 < 𝑖 ≤ 𝐽 are “routine tasks” while tasks in 

the range 𝐽 < 𝑖 ≤ 𝑁 are “nonroutine tasks.” Below we consider an alternative specification 

that meets the Kremer-Maskin conditions. While real world skill assignments may involve a 

mix of matching and sorting, these models illustrate in simple form the different effects that 

automation has on inequality between firms and within firms.11  

 

11 Automation might also affect firms’ choices regarding sorting and cross-matching. Kremer and Maskin 
(1996) provide a variety of evidence that skill sorting has been increasing and workplaces are becoming more 
segregated by skill, that is, workers are more likely to work with other workers of similar skill (see also E. 
Handwerker 2015; E. W. Handwerker, Spletzer, and others 2016). Our model could be extended to address this 
possibility. 
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Sorting 

In a market with complete sorting, some firms, designated by an “H” subscript, hire 

only high skill workers while other firms hire only low skill workers, designated with an “L” 

subscript. We assume that both types have the same level of automation initially. The first 

order profit maximizing conditions (4) then hold separately for each firm type. Combining 

the first order conditions for quality and labor, for worker/firm type j, 

𝑤𝑗 =
𝑌𝑗

𝑁𝑙𝑖
=

𝜃𝑗 ∙ ℎ′(𝑞𝑗) ∙ 𝑞𝑗

𝑁
,     𝑗 = 𝐿, 𝐻. 

In the Appendix we show that in equilibrium, both 𝑞𝑗 and the term 𝜃𝑗 ∙ ℎ′(𝑞𝑗) ∙ 𝑞𝑗 are 

decreasing in 𝜃𝑗, all else equal. This means that 𝑤𝐻 > 𝑤𝐿 and the ratio of between-firm 

wages is 

𝜔 ≡
𝑤𝐻

𝑤𝐿
=

𝜃𝐻 ∙ ℎ′(𝑞𝐻) ∙ 𝑞𝐻

𝜃𝐿 ∙ ℎ′(𝑞𝐿) ∙ 𝑞𝐿
> 1. 

The between-firm wage gap corresponds directly to differences in skill/effort between the 

firm types. Furthermore, it is straightforward to show that capital intensity and productivity 

are higher in type H firms: 

𝑤𝐻

𝑤𝐿
=

𝐾𝐻

𝐿𝐻

𝐾𝐿

𝐿𝐿
⁄ =

𝑌𝐻

𝐿𝐻

𝑌𝐿

𝐿𝐿
⁄ > 1. 

To introduce automation into this setting, note that because type H firms have 

higher productivity, they also have stronger incentives to adopt new automation technology. 

The increase in output per worker from automation is 
𝑌

𝐿
∆ ln 𝐴 and so will be larger for type 

H firms. This increase will also be greater for the remainder effect term in (6). Suppose that 

there is a fixed cost per worker needed to adopt an automation technology. Then, in some 

cases, type H firms will find it profitable to automate while type L firms will not.12 Given this 

difference, let us assume that type H firms automate, and type L firms do not. Disparate 

adoption of automation technologies is, in fact, widely observed and appears in our data as 

well. 

 

12 Firms may make temporary profits from automating, yet competition will eventually dissipate these rents. 
There are other reasons some firms may adopt while other do not: different capabilities of managers and 
workers or different access to proprietary technologies. 
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With this assumption, we can calculate 𝜔 using an approach like the one used in 

equation (7). Here, however, we must account for changes in the capital to labor ratios for 

the two groups. As 𝑌 𝐿⁄  increases for H firms, capital also shifts to those firms. In the 

Appendix we account for this change in the equilibrium solution to derive an approximate 

lower bound for the change in the between-firm wage ratio: 

∆ ln 𝜔 = ∆ ln 𝑤𝐻 − ∆ ln 𝑤𝐿 ≈> −
1

𝑁 − 𝐼
+

𝑁

𝑁 − 𝐼 − 1
[∆ ln 𝐴𝐻 + ∆ ln 𝑄𝐻 +

1

𝐼
]. 

The first term represents the displacement effect. The expression in brackets captures the 

productivity and quality effects. Here the displacement effect decreases between-firm wage 

differences while the productivity and remainder effects increase between-firm wage 

differences. If the productivity and remainder effects are larger than the displacement effect, 

the between-firm wage gap increases. If, on the other hand, low wage firms tend to 

automate, contrary to most evidence, then the changes would narrow between-firm 

differences. And if both types of firms automated, the results are ambiguous. Thus, growing 

differences in labor quality explain rising between-firm pay gaps if adoption of automation 

technology is uneven and if the displacement effect is smaller than productivity and 

remainder effects.   

Cross-matching 

Kremer and Maskin (1996) show that cross-matching occurs when some tasks are 

more sensitive to quality than others. The idea is that, under some parameter values, firms 

will choose to assign high skill workers to sensitive tasks and low skill workers to tasks that 

are less sensitive.13 We can accommodate these notions into our production function by 

specifying now that  

𝑞𝑖 = {

1, 𝑖 ≤ 𝐼
1, 𝐼 < 𝑖 ≤ 𝐽

𝑓(𝑒𝑖), 𝐽 < 𝑖 ≤ 𝑁
} 

where 𝐼 < 𝐽 < 𝑁. Routine tasks in the range 𝐼 < 𝑖 ≤ 𝐽 are not sensitive to the quality of 

labor on those tasks while nonroutine tasks in the range 𝐽 < 𝑖 ≤ 𝑁 depend on the skill and 

effort of workers. With this modification to the production function, firms will prefer to hire 

 

13 Acemoglu and Restrepo (2018a; 2018b) exogenously assign high skill workers to nonroutine tasks and low 
skill workers to routine tasks. 
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high skill workers for nonroutine tasks and low skill workers for routine tasks. In 

equilibrium, the fixed stocks of low and high skill workers will be allocated proportionally to 

firms so that the ratio 𝐿𝐿/𝐿𝐻 of low skill workers to high skill workers will be the same. It is 

straightforward to show that firms will prefer to assign only high skill workers to nonroutine 

tasks and only low skill workers to routine tasks. Then first order profit maximizing 

conditions give us  

𝑤𝐻 =
𝑌

𝐿𝐻

(𝑁 − 𝐽)

𝑁
= 𝜃𝐻ℎ′(𝑞𝐻)𝑞𝐻𝑁,        𝑤𝐿 =

𝑌

𝐿𝐿

(𝐽 − 𝐼)

𝑁
 

and the within-firm wage difference ratio is 

𝜙 ≡
𝑤𝐻

𝑤𝐿
=

𝑁 − 𝐽

𝐽 − 𝐼
∙

𝐿𝐿

𝐿𝐻
. 

Note that the within firm wage difference is independent of the quality of the high skill 

workers. The relative wage within firms depends on the relative supply of workers from 

different skill groups and the relative demand for routine and nonroutine tasks. While high 

skill workers will receive higher performance pay, their total pay package is not necessarily 

greater. 

Now consider automation in this setting. In some papers, Acemoglu and Restrepo 

(2018a; 2018c) study situations where only routine tasks are automated. Then automation 

can be considered a change in the limit of automation from 𝐼 to 𝐼 + 1 as above. Then 

∆ ln 𝜙 ≈
𝑑

𝑑𝐼
(

𝑁 − 𝐽

𝐽 − 𝐼
∙

𝐿𝐿

𝐿𝐻
) =

1

𝐽 − 𝐼
> 0. 

Automation increases within-firm wage differences in this setting. However, automation is 

not necessarily restricted to routine tasks and then this type of labor displacement might 

decrease within-firm wage gaps (see Acemoglu and Restrepo 2018b).  

But the general point remains that automation influences within-firm wage gaps by 

way of the displacement effect. In our model as well as the models in the literature, labor 

displacement directly affects the relative demand for different skill groups within firms and 

aggregate changes in demand for these groups determines the relative equilibrium wages. 

Because workers from one skill group are employed at this wage across firms, the effect will 

be observed as within-firm wage differences. On the other hand, the remainder effect 

concerns firm-, task-, and technology-specific skills that are not common across different 
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firms. These affect between-firm wage differences but not differences between skill groups 

within the firm. 

This model provides three testable hypotheses: 

1. Automation should increase the demand for task- and technology-specific skills 

across multiple skill groups; 

2. This greater demand should be evident in the firm’s greater willingness to pay 

more for these groups; and, 

3. Assuming that automation differentially affects the tasks assigned to different 

skill groups, it should change the relative employment demand for different skill 

groups. 

The first two hypotheses distinguish this model from pure models of labor displacement: 

here, automation complements labor. The firm’s greater willingness to pay provides an 

explanation for greater between-firm pay gaps. Our model also differs from the skill-biased 

technical change hypothesis because the complementary effect of technology is not limited 

to specific skill groups. 

Empirical Analysis 

Data 

These three hypotheses concern different aspects of firm labor demand: the specific 

skills demanded, the firm’s willingness to pay for different skill groups, and the relative 

quantities of labor demanded for different skill groups. We measure these aspects of demand 

using help-wanted advertisements collected by Burning Glass Technologies. Burning Glass 

scrapes, deduplicates, and cleans the near universe of online job advertisements.  A previous 

analysis of the dataset showed that this it accounts for 60-70% of all job openings and 80-

90% of openings requiring a bachelor’s degree or more (Carnevale, Jayasundera, and 

Repnikov 2014). The data include the advertised salary, firm name, industry, occupation, 

required education and experience, requested skills, and geographic location of the job. Our 
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sample spans from January 2014 to June 2019.14 We aggregate the ads by firm and calendar 

quarter and use this as our unit of observation.  

Changes in labor demand should be immediately reflected in help-wanted advertising 

even though these changes might take longer to appear among the group of employed 

workers. To the extent that firms demand greater quality on task-specific skills, we should 

see increases in the specific skills requested in job ads. To the extent that greater demand 

increases the firm’s willingness to pay, we should higher pay offered for jobs with 

comparable characteristics. And to the extent that demand changes across skill groups, we 

should see shifts in the share of job ads directed to different skill groups.We measure these 

outcomes with the following variables: 

Specific skills. Burning Glass collects 16,050 different skills requested in ads as well as 

experience and education required. We group the specific requests into five mutually 

exclusive categories: social and cognitive skills as identified by Deming and Khan (2018), 

other soft skills, information technology and artificial intelligence, and other skills, mainly 

skills related to other technologies and industry knowledge (see Appendix). We use the mean 

number of requests per ad for each category and the mean experience and education 

requested as outcome measures. 

Pay offered. Some help wanted ads list a salary offered or a range of salaries. If a range is 

offered, we take the middle of the range for our salary calculations. The outcome variable is 

the log Mincer residual in a regression equation including experience, experience squared, 

education, detailed occupation, state, year, and a measure of labor market tightness. We 

follow Moscarini and Postel-Vinay (2016) in defining labor market tightness as the ratio 

between Job Openings and Labor Turnover Survey (JOLTS) statewide openings for the 

non-farm sector and the state unemployment rate.15  

 

14 While Burning Glass provides data prior to 2014, those years used different methods to collect, de-duplicate, 
and process the data. Because those differences might affect our analysis, we do not use that data. We omit job 
advertisements that are missing a firm name or salary, are in the public or university sector, are part time, or are 
internships. To identify ads belonging to the same firm, we cleaned names, removing standard business 
identifiers (“Inc.”, “Ltd”, “Co.”, etc.) and looking for typos in the most frequently used names in the dataset. 

15 Because most jobs do not list salaries, sample selection bias might affect this measure. Bessen et al. (2020) 
find that an exogenous change to salary listing does not significantly affect listed salaries, mitigating this 
concern. 
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Relative employment. To measure changes in the relative hiring of skill groups, we use the 

share of job ads for each group. We divide occupations into two sets of skill groups defined 

by characteristics identified in O*NET, version 17.0. First, we identify whether a bachelor’s 

degree or higher is required for most jobs in that occupation. Second, we identify 

occupations as routine cognitive, routine manual, nonroutine cognitive, and nonroutine 

manual using the indexes for these characteristics developed by Acemoglu and Autor (2011); 

an occupation is assigned to the job characteristic skill group if its index ranks in the top 

third.16 

Finally, note that we exclude information technology jobs (SOC 15) from our skill 

and pay measures to avoid confounding effects. 

Implementation 

We seek to test the model predictions regarding the adoption of large proprietary 

information systems. Much of the literature on technology and inequality measures 

technology as predicted “exposure” to automation, or industry-level investment levels, or 

proxies such as the share of workers in routine-intensive jobs. To capture impacts on 

between-firm differences, we thought it important to use firm-level measures of actual 

technology adoption. These eliminate many potentially confounding correlates.  

We measure investment in this technology from the job ad data as the share of jobs 

going to software developer occupations.17 This captures investment in firms’ own-

developed software and it is correlated with contracted software and other IT measures 

(Tambe and Hitt 2012; Bessen 2020 fn. 12).  

To analyze adoption, we identify “spikes” in developer hiring as events where the 

share of software developers rose by one percent or more relative to the mean share over the 

previous four quarters.18 This approach leverages the finding from the capital investment 

 

16 These groups are not mutually exclusive. 

17 Occupations in SOC 15 excluding 15-1141, 15-1142, 15-1151, and 15-1152, database, network, and computer 
administrators and support specialists. 

18 Also, to reduce noise, we eliminate spikes when the firm has fewer than 50 ads in quarter. A variety of 
robustness checks in the Appendix vary the threshold, finding little effect on results. 19% of firm-quarters are 
spikes, weighted by the number of job ads. While only about 1% of firms spike, these firms account for 77% of 
the hiring of software developers. 
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literature that when uncertain investments are indivisible and irreversible, they will occur in 

discrete episodes of lumpy investment (Haltiwanger, Cooper, and Power 1999; M. E. Doms 

and Dunne 1998). We find that investments in own-developed software are also lumpy and 

persistent (see Appendix Figures A1 and A2), so we use these discrete events in difference-

in-differences (DID) regressions and event studies. It is possible that we fail to identify some 

lumpy investments and incorrectly identify others. For example, firms rely on outside 

contractors to implement new systems rather than hiring their own developers. To the 

extent misidentification occurs, our results will be understated.  

Do these spike events represent automation? We note generally that most 

information technology applications involve some degree of automation—they manage 

information that was formerly managed by humans. This is strictly true for applications that 

automate business processes such as enterprise resource planning, customer relationship 

management, and electronic data interchange. In fact, the use of these systems is correlated 

with bookkeeping measures of automation expenditures (Bessen et al. 2022 Section 2.3). We 

flag events that specifically include hiring of workers with skills related to these automation 

applications and find that 81% of our spike event do.19 Similarly, 31% of the spikes involve 

firms requesting artificial intelligence skills. Thus our spikes predominately involve 

applications that automate tasks. 

To avoid problems of heterogeneity in our two-way fixed effects regressions, we 

construct balanced panels around each possible spike quarter and run stacked regressions 

(Cengiz et al. 2019, Appendix D). Let 𝑇𝑖 be the first quarter in which firm i spikes. For each 

possible spike quarter, p, designating a different cohort, we construct a balanced panel P 

consisting of observations from 𝑡 = 𝑝 − 5 to 𝑡 = 𝑝 + 5 of the treatment group, 𝑇𝑖 = 𝑝, 

and the control group, 𝑇𝑖 > 𝑝 + 5. Because firms that spike are different from firms that do 

not (see Table A1), we restrict the control group to firms that spike at some point in our 

data. This means that the treatment and control groups differ only in the timing of their 

adoption events.20 This gives us a degree of identification by removing fixed or slowly 

 

19 These are jobs requesting skills with keywords ERP, CRM, EDI, MRP, SAP, Automat*, and Robot*. 

20 Bessen et al. (2022, Appendix) provide a model for differential timing. We also duplicate our results for the 
full sample (Table A4). 
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changing confounders, such as industry and firm size, and by distinguishing major new 

investments from maintenance hiring. Our DID specification for outcome variable Y is 

𝑌𝑖𝑝𝑡 = 𝛿 ∙ 𝟏(𝑡 ≥ 𝑝) + 𝜇𝑖𝑝 + 𝜏𝑡 + 𝛽𝑋𝑖𝑡 + 𝜖𝑖𝑝𝑡 . (8) 

where 𝛿 is the average treatment effect, 𝜇𝑖𝑝 is the panel x firm fixed effect, 𝜏𝑡 is the time 

fixed effect, and 𝑋𝑖𝑡 is a vector of control variables. 

However, the model is still not fully identified because the timing of adoption is 

endogenous. While we test for and do not find significant pre-trends in our outcome 

variables, it is still possible that some other factor is correlated with adoption, occurring 

simultaneously, and which independently affects outcome variables. We identify and control 

for four such possible simultaneous confounders: 

1. Labor market tightness. Tight labor markets might induce firm to automate 

and might also raise wages and skills demanded (Modestino, Shoag, and Ballance 

2019 find tight labor markets lower skill requirements). We use the tightness 

measure described above to control for this confounder. 

2. Outsourcing of low wage jobs. Perhaps automation facilitates the outsourcing 

of low wage jobs, mechanically raising the average pay and skill requirements of 

remaining jobs. We control for the share of “outsourceable” jobs that should 

track these shifts.21 

3. Productivity and demand shocks. Perhaps firms adopt new technology in 

response to productivity or demand shocks and these shocks are also passed 

through to wages. We control for shocks using additional variables obtained 

from Compustat for the subsample of firms matched to Compustat.22 One 

variable is the growth in real sales from the quarter before the spike to a year 

 

21 The outsourceable occupations are Protective Services (SOC 33), Food and Serving (SOC 35), Building, 
Grounds, Maintenance (SOC 37), and Transportation and Moving (SOC 53) outside of outsourcing industries, 
NAICS 484, Truck Transportation, NAICS 561, Administrative and Support Services, NAICS 722, Food 
Services and Drinking Places, and NAICS 811, Repair and Maintenance. 

22 Bledi Taska of Burning Glass provided a preliminary key to match to Compustat, which we supplemented 
with our own name cleaning algorithm. Further, we used a fuzzy match with distance scores, which was then 
manually reviewed for those with close distances. The match assigns approximately 63% of the firms in 
Compustat to a job posting, with 73% of the firm-years being matched to a job posting. The firms that are 
matched to a posting account for 83% of employment total in Compustat. 
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earlier. The second control is a third order polynomial in log variable costs and 

log net capital stock (both deflated).23 

4. Management. Perhaps new managers prefer to adopt technology and also to 

hire more highly skilled workers. For the entire sample, we add the manager 

(SOC 11) share of hiring as a control. For the Compustat subsample, we add a 

binary variable to flag changes of CEO using data obtained from Execucomp. 

We find that some of these control variables have weak correlations with the 

occurrence of spikes (see Table A2), but also, they do not substantively change our results. 

This gives us a limited form of identification; it is not equivalent to conducting a randomized 

controlled trial, but our results are identified conditional on the following assumption:  

Identification assumption: there are no significant confounders that occur 
simultaneously with the adoption of these information technology systems other than 
labor market conditions, outsourcing, productivity and demand shocks, and 
management changes.  
 

As such, our results are consistent with our model and inconsistent with pure displacement 

models and with the skill-biased technical change hypothesis. Finally, our spiking results 

pertain to a select sample of firms. Below we also explore the broader validity of our model 

to the universe of help-wanted ads. 

Findings 

Firm Spikes 

Table 1 presents stacked difference-in-differences regressions (a balanced panel for 

each spiking year) where the dependent variables are the number of skills requested in the 

various categories.24 All of the skill measures show significant increases following the 

adoption event except for education. The top panel includes all jobs except for IT jobs (SOC 

15). We interpret the greater number of skills requested as evidence of greater demand for 

 

23 In the style of Olley and Pakes (1996) this polynomial is a nonparametric representation of productivity 
obtained by inverting the demand equation for variable inputs (cost of goods sold). 

24 Regressions are weighted by the number of ads and include time and cohort by firm fixed effects as well as 
controls for labor market tightness, and the shares of management and outsourceable jobs. 
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specific skills. When firms place greater value on “Teamwork” or on “Adhesives Industry 

Knowledge,” they will be more likely to specifically request these skills.  

Panel B includes the skill measures only for jobs that do not require a college 

diploma.25 These coefficients tend to be a bit smaller, but as in the larger sample, all are 

significant and positive except for education. Skill demands appear to rise for both college 

and non-college jobs, although a bit less for the latter. 

Panel C looks at the share of skills rather than the number, that is the number of skill 

requested in each category divided by the total number of skills requested. Following a spike, 

firms appear to place relatively greater demand on social and soft skills, suggesting 

organizational changes consistent with Deming (2017). However, these shifts in the 

composition of skills are small compared to the increases in demand seen in Panel A.26 The 

overall impact appears to be that firms request more of the kinds of specific skills that they 

requested before the spike, that is, they demand higher labor quality. 

Table 2 examines a broader set of skill groups, namely jobs classified as 

routine/nonroutine and cognitive/manual as per Acemoglu and Autor (2011). Panel A 

shows that all groups show significant increases in the mean number of skills requested 

except for nonroutine manual jobs. These results suggest that the technology complements 

workers in a wide range of jobs. As we would expect, firms are also willing to pay more to 

these workers seemingly complemented by software investments—the greater demand for 

skills does not just reflect the preferences of HR professionals. The dependent variable in 

Panel B is the log residual wage after controlling for job characteristics. These pay levels rise 

significantly for all groups except nonroutine manual workers; they rise notably more (9.1%) 

for nonroutine cognitive jobs. 

Table 3 tests the robustness of results to additional controls. Here the sample is 

limited to firms that are matched to Compustat. Using Compustat and Execucomp data, we 

add a control (in columns 3 and 6) for the rate of revenue growth, a flag for change of CEO, 

and a third order polynomial in log capital and log variable costs to capture productivity 

 

25 That is, fewer than half the jobs require a diploma as rated by O*NET. 

26 Expressed as percentages, the increases shown in Panel A range from 3% to 13%, much larger than the 
shifts, which are less than 1%. 
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nonparametrically. Some of these controls are statistically significant, but they do not 

meaningfully alter our estimates of the treatment effect. 

Our results are also robust to other concerns. Figures 1 and 2 shows event study 

graphs corresponding to the first column in Table 2.27 The graph shows a significant and 

persistent increase in the mean number of skills requested and log residual wage following an 

adoption event. Moreover, there is no evidence of pre-event trends in these outcome 

variables nor in the other outcome variables used in Table 1, lending support to the parallel 

trends assumption (see Appendix Table A9). Table A3 tests sensitivity to different spike 

thresholds and panel lengths; our results are robust to these changes. Table A4 shows 

regressions using an expanded sample that adds firms that never spike; the results are similar. 

Table A6 finds that excluding firms in industries that create software products (NAICS 50 

and 54) makes little difference to our results. About one third of our spiking firms use 

artificial intelligence as evidenced by requests for AI skills during the spiking quarter; 81% 

involve automation technologies. Our main results do not change significantly for these 

groups of firms (Table A7). We also conduct a placebo test to support the idea that the 

effects we observe are related to software specifically and not to other technologies or 

general hiring of higher paid workers. In Table A8, we show results from spikes in the hiring 

of engineers and technicians constructed in the same way as our software spikes. These 

personnel may tend to work on technologies that are not so much about automation. Spikes 

in the hiring of engineering related personnel do not exhibit similar treatment effects, 

suggesting that it is something specifically about information technology—perhaps 

automation—that is driving our results.  

The increased skill demands and greater pay suggest that proprietary information 

systems complement labor. Our model suggests that automation can also displace labor. 

Table 4 shows evidence of displacement. The top panel shows the share of job ads going to 

each skill group. Following technology investment, relative hiring increases for jobs requiring 

college degrees and for jobs with cognitive skills, both routine and nonroutine; relative hiring 

 

27 These show the 𝛿𝜏 coefficients from the following modification of (8):  

𝑌𝑖𝑝𝑡 = ∑ 𝛿𝜏 ∙ 𝟏(𝜏 = 𝑡)5
𝜏=−4
𝜏≠−1

+ 𝜇𝑖𝑝 + 𝜏𝑡 + 𝛽𝑋𝑖𝑡 + 𝜖𝑖𝑝𝑡. 
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decreases for non-college jobs and manual jobs. Panel B displays the log level of hiring by 

skill groups. Job ads decrease for occupations that do not require a college degree and for 

routine manual jobs. Thus, consistent with our model, there is labor displacement that 

occurs alongside increased demand for skills as seen in the prior tables.  

In theory, this displacement contributes to lower equilibrium wages for workers who 

only have routine manual skills or only a high school diploma. In practice, however, this is 

difficult to establish empirically because other factors might confound the effect of 

technology on the pay of different demographic groups (but see Acemoglu and Restrepo 

2021). For instance, in 1980 62% of the U.S. workforce had only a high school degree or 

less; today that figure is 38%. It seems highly likely that expanded access to higher education 

may have selectively induced some workers—those with lower disutilities of learning—to 

seek more education. This means that high school educated workers do not comprise a 

consistent skill group over time and declining pay for this group might reflect declining 

ability rather than technological effects. Our model provides some insight into the relative 

importance of labor displacement on wages. Because labor displacement affects market 

wages, it affects all firms equally; that is, it increases within-firm inequality. The finding that 

relatively little of the increase in inequality arises within firms—26% according to Song et al. 

(2019)—suggests that labor displacement is not the dominant driver of rising inequality. 

To summarize, given our identification assumption, the evidence on residual wages 

implies that firm investments in proprietary information technology contributes to between-

firm pay differences; the evidence on skills requested implies that these firm pay increases 

are associated with increased firm skill demands. In other words, these technology 

investments contribute to sorting of skills to higher paying firms. However, the evidence 

presented pertains only to a select sample of firms. 

Sorting  

We can also explore the relationships between firm pay levels, skills requested, and 

information technology across the entire sample of help wanted ads by looking at sorting of 

skills to high-paying firms. Studies using linked employee-employer data find that sorting 

accounts for most of the increase in wage inequality since 1980 (Card, Heining, and Kline 

2013; Barth, Davis, and Freeman 2018; Song et al. 2019; Lachowska et al. 2020). Utilizing the 

AKM method (Abowd, Kramarz, and Margolis 1999), these studies estimate firm pay fixed 
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effects controlling for observed and unobserved worker heterogeneity with worker fixed 

effects. The worker effects are positively correlated with the firm effects and this correlation 

accounts for much of the rise in inequality. Assuming that the worker effects represent 

worker skills (rather than arising from search frictions or other factors), this correlation 

represents sorting of skilled workers to high-paying firms.  

We alternatively estimate firm pay fixed effects by regressing pay offered in job ads 

controlling for job characteristics. These pay offers are obviously independent of individual 

worker heterogeneity. Using log salary as the dependent variable (or the mean of the salary 

range limits if a range is listed), we calculate firm fixed effects in a regression with controls 

for detailed occupation, industry, state, year, labor market “tightness,” skills requested, 

education required, and experience required (see Table A5). The R-squared for this 

regression is .688. The regression excludes software development occupations to avoid 

spurious correlation with our key independent variable. This gives us estimates of firm fixed 

effects for 205,306 firms that posted 85,142,065 help wanted ads, excluding ads for 

information technology occupations. These firm fixed effects are different from fixed effects 

derived from the AKM method—our fixed effects reflect differences in pay in hiring, not in 

the pay of incumbent workers.28 Nevertheless, both methods provide estimates of the firms’ 

varied willingness to pay for comparable workers. And we can measure sorting by looking at 

the correlation between these firm fixed effects and actual skill levels demanded in the job 

ads. These correlations are shown in the top panel of Table 5 which reports regressions of 

mean skill measures for each firm against firm wage fixed effects. The correlations are all 

significant, indicating sorting. The standardized coefficients represent the correlation 

coefficients. These are similar to the correlation of 0.28 between worker fixed effects and 

firm fixed effects reported by Song et al. (2019) for the period from 2007-13 using the AKM 

method.29 

 

28 There is a close correspondence between average advertised salaries and average salaries actually paid as 
observed in the Current Population Survey. Weighting the job ads to match the CPS distribution across 
occupations, the median log salary range from Burning Glass is from 10.32 to 10.69. The median log CPS 
salary for new hires is 10.48. 

29 Calculated using their figures for 
𝑐𝑜𝑣(𝑊𝐹𝐸,𝐹𝐹𝐸)

√𝑣𝑎𝑟(𝑊𝐹𝐸)𝑣𝑎𝑟(𝐹𝐹𝐸)
. 
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But it turns out that firm hiring of software developers is correlated with both firm 

fixed effects and with skill measures.30 The bottom panel adds quadratic terms in the mean 

share of software developers in hiring. The correlations between worker fixed effects and 

skill measures drop sharply. The last row shows the magnitude of the decrease in the 

standardized coefficients as a portion of the correlation coefficient in Panel A. It appears 

that information technology investments can account for the majority of the sorting of skills 

to high paying firms in hiring. Given that firm investment in own-developed software has 

increased more than ten-fold since the 1980s (BEA data), this shift can explain much of the 

rise in inequality due to sorting. 

Conclusion 

This paper argues that automation can be both cost-reducing and quality-enhancing; 

it can replace labor on some tasks while it increases demand for skills on others. Major 

investments by firms in own-developed information technology are followed by greater 

demand for specific skills requested in job ads and by higher pay offers. Moreover, demand 

increases across skill groups, both for jobs requiring college and those that do not, for 

routine jobs as well as nonroutine jobs. These broad increases contribute to between-firm 

pay differences and the sorting of skilled workers to high paying firms. Analyzing the 

universe of help-wanted ads, we find that these information technology investments account 

for most of the sorting across firms. 

This pattern differs from predictions of the skill-biased technical change hypothesis 

and from theories of labor displacement. Our model provides an explanation: labor quality 

matters. While automation displaces labor on some tasks, it can also increase the returns to 

skill on the remaining non-automated tasks. Models that view automation as strictly 

substituting for labor without also complementing some workers might be incomplete and 

overly pessimistic. For instance, Acemoglu and Restrepo argue that wages will fall for “so-so 

innovations” where the productivity gain is small. But if automation raises the demand for 

 

30 See our working paper for a more complete exploration of these relationships (Bessen, Denk, and Meng 
2021) 
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quality on the remaining tasks (remainder effect), wages may rise even with modestly 

productive innovations. 

The matter is ultimately empirical, but here, too, labor quality matters for the 

analysis. Inequality is frequently measured by differences between occupational or 

educational groups. But our evidence suggests that skills and inequality change along other 

dimensions as well. In our model, labor displacement gives rise to greater within-firm 

inequality, but the evidence suggest that this is a secondary contributor to growing inequality. 

On the other hand, automation that complements labor can increase between-firm 

inequality, which appears to be more important.  

If so, this suggests a different direction for policy to combat income inequality. 

Researchers who assume that automation is purely labor displacing have proposed policies 

to redistribute income, to alter tax incentives to discourage too much automation, and to 

encourage engineers to not develop automation (Korinek and Stiglitz 2018; Benzell et al. 

2016; Acemoglu 2021; Brynjolfsson 2021). But if automation mainly complements workers, 

giving rise to greater between-firm pay differences, then policy might instead need to focus 

on reducing differences between firms in the uneven adoption of technology. Indeed, 

concerns have been raised about slower diffusion of technology (Andrews, Criscuolo, and 

Gal 2016; Akcigit and Ates 2021). While policy evaluation is beyond the scope of this paper, 

our analysis highlights that policy should be based on a richer picture of automation, one 

where technology complements labor as well as substitutes for it, where the quality of labor 

matters.  
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Figures 

 

Figure 1. Number of skills requested increases following adoption event. 
Note: This figure presents an event study equivalent to Column 1, Panel A, Table 2, 
reporting the coefficients of quarter dummies for treated firms. The regression is weighted 
by the number of ads per quarter and it includes fixed effects for quarter and cohort by firm. 
The dashed lines show the 95% confidence interval with errors clustered by cohort by firm. 
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Figure 2. Log residual pay increases following adoption event. 
Note: This figure presents an event study equivalent to Column 1, Panel B, Table 2, 
reporting the coefficients of quarter dummies for treated firms. The regression is weighted 
by the number of ads per quarter and it includes fixed effects for quarter and cohort by firm. 
The dashed lines show the 95% confidence interval with errors clustered by cohort by firm. 
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Tables 

Table 1. Technology Adoption Raises Demands for Specific Skills 

 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Skill measure: All IT+AI  Other Cognitive Social Soft Experience Education 

         

A. All jobs, number of skills       

Post treatment 0.318*** 0.041*** 0.173*** 0.017*** 0.048*** 0.038*** 0.065*** 0.017 

 (0.071) (0.008) (0.059) (0.004) (0.010) (0.010) (0.019) (0.020) 

         

Observations 102,086 102,086 102,086 102,086 102,086 102,086 97,045 96,897 

R-squared 0.873 0.821 0.868 0.888 0.872 0.868 0.871 0.894 

         

Pre-Spike Means 10.005 0.518 7.437 0.325 0.762 0.962 3.350 14.581 

B. Jobs not requiring college diplomas, number of skills     

Post treatment 0.222*** 0.031*** 0.105* 0.010** 0.040*** 0.037*** 0.041* 0.035 

 (0.070) (0.009) (0.058) (0.004) (0.010) (0.011) (0.022) (0.024) 

         

Observations 95,679 95,679 95,679 95,679 95,679 95,679 87,220 86,775 

R-squared 0.840 0.696 0.843 0.833 0.838 0.826 0.808 0.853 

         

C. All Jobs, Share of skills      

Post treatment  0.002* -0.008*** 0.001 0.002*** 0.004**   

  (0.001) (0.002) (0.000) (0.001) (0.002)   

         

Observations  102,086 102,086 102,086 102,086 102,086   

R-squared  0.854 0.847 0.853 0.857 0.755   

         

Note: these coefficients are from stacked difference-in-differences regressions where a balanced panel (t-5 to t+5) is included 

for each cohort based on spiking year. The unit of observation is firm by quarter. All firms in the sample spike at some time 

during the sample period and only observations are included that have not spiked previously. All regressions include controls 

for labor market tightness, management job share, the outsourceable job share, time and cohort x firm fixed effects and 

standard errors are clustered by cohort x firm (*** p<0.01, ** p<0.05, * p<0.1). To treat heteroscedasticity arising from 

sample variance, regressions are weighted by the number of help-wanted ads for each firm-quarter. The top panel includes 

counts of skills requested on all jobs; the bottom panel counts skills only in occupations where the majority of jobs do not 

require a college diploma. IT jobs (SOC 15) are excluded from the regressions. 
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Table 2. Adoption of Technology Raises Skill Demands and Pay Across Skill Groups 

 
 (1) (2) (3) (4) (5) (6) 

Skill group: All College not 

required 

Routine 

Cognitive 

Routine 

Manual 

Nonroutine 

Cognitive 

Nonroutine 

Manual 

       

A. Dependent variable: number of specific skills requested    

Post treatment 0.318*** 0.222*** 0.398*** 0.376*** 0.512*** 0.153 

 (0.071) (0.070) (0.087) (0.105) (0.091) (0.144) 

       

Observations 102,086 95,679 97,117 69,798 100,449 62,967 

R-squared 0.873 0.840 0.803 0.771 0.816 0.732 

 

B. Dependent variable: Log Residual Pay    

Post treatment 0.087*** 0.054** 0.067** 0.067* 0.091*** 0.023 

 (0.023) (0.024) (0.029) (0.037) (0.032) (0.031) 

       

Observations 29,437 21,073 15,617 10,820 20,092 9,345 

R-squared 0.476 0.557 0.543 0.622 0.473 0.627 

Note: these coefficients are from stacked difference-in-differences regressions where a balanced panel (t-5 to t+5) is included 

for each cohort based on spiking year. The unit of observation is firm by quarter. All firms in the sample spike at some time 

during the sample period and only observations are included that have not spiked previously. All regressions include controls 

for labor market tightness, management job share, the outsourceable job share, time and cohort x firm fixed effects and 

standard errors are clustered by cohort x firm (*** p<0.01, ** p<0.05, * p<0.1). To treat heteroscedasticity arising from 

sample variance, regressions are weighted by the number of help-wanted ads for each firm-quarter. The dependent variable in 

the top panel is the total number of skills requested per ad; the dependent variable in the bottom panel is the log residual 

salary offered after controlling for experience, experience squared, education, detailed occupation, state, year, and a measure 

of labor market tightness. IT jobs (SOC 15) are excluded from the dependent variables. 
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Table 3. Skill and Pay Treatment Effects are Robust to Controls 
 

 (1) (2) (3) (4) (5) (6) 

Dependent Variable Number of Skills Requested Log Residual Pay 

       

Post treatment 0.245** 0.214* 0.213** 0.102*** 0.102*** 0.100*** 

 (0.117) (0.112) (0.107) (0.035) (0.035) (0.036) 

Labor market tightness  0.284 0.194  -0.849 -0.802 

  (1.064) (1.097)  (0.580) (0.591) 

Management jobs  6.653*** 6.595***  -0.272 -0.271 

  (0.676) (0.650)  (0.221) (0.201) 

Outsourceable jobs  -7.210*** -7.188***  0.050 0.004 

  (1.793) (1.768)  (0.314) (0.316) 

Growth Rate of Sales   0.260*   0.071 

   (0.154)   (0.060) 

Lag CEO change   -0.966   -0.087*

   (1.032)   (0.051)

3rd order productivity 

polynomial 
      

Polynomial probability value   0.013   0.023 

       

Observations 14,008 14,008 14,008 4,706 4,706 4,706 

R-squared 0.873 0.882 0.884 0.461 0.465 0.468 

Note: these coefficients are from stacked difference-in-differences regressions where a balanced panel (t-5 to t+5) is included 

for each cohort based on spiking year. The unit of observation is firm by quarter. All firms in the sample spike at some time 

during the sample period and only observations are included that have not spiked previously. The sample in this table 

includes only firms that have been matched to Compustat in order to include additional control variables. All regressions 

include time and cohort x firm fixed effects and standard errors are clustered by cohort x firm (*** p<0.01, ** p<0.05, * 

p<0.1). To treat heteroscedasticity arising from sample variance, regressions are weighted by the number of help-wanted ads 

for each firm-quarter. The dependent variable in the first three columns is the total number of skills requested per ad; the 

dependent variable in columns 4-6 is the log residual salary offered after controlling for experience, experience squared, 

education, detailed occupation, state, year, and a measure of labor market tightness. The polynomial used in columns 3 and 6 

includes log real cost of goods sold and log real beginning-of-quarter capital. The probability value reported is for the F-test 

of the null hypothesis that polynomial coefficients are jointly zero. IT jobs (SOC 15) are excluded from the dependent 

variables. 
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Table 4: Technology Adoption and Changes in Hiring 
 
 (1) (2) (3) (4) (5) (6) 

Skill Group: College 

required 

College not 

required 

Routine 

Cognitive 

Routine 

Manual 

Nonroutine 

Cognitive 

Nonroutine 

Manual 

       

A. Share of Hiring       

Post treatment 0.017*** -0.017*** 0.007*** -0.008*** 0.021*** -0.006*** 

 (0.002) (0.002) (0.003) (0.002) (0.002) (0.002) 

       

Observations 103,547 103,547 103,594 103,594 103,594 103,594 

R-squared 0.963 0.963 0.910 0.964 0.957 0.970 

       

B. Log level of Hiring 
     

Post treatment 0.018 -0.083** 0.035 -0.107*** 0.029 -0.026 

 (0.030) (0.033) (0.032) (0.040) (0.030) (0.048) 

       

Observations 103,404 103,413 97,567 71,018 100,747 64,290 

R-squared 0.920 0.927 0.925 0.925 0.923 0.923 

Note: these coefficients are from stacked difference-in-differences regressions where a balanced panel (t-5 to t+5) is included 

for each cohort based on spiking year. The unit of observation is firm by quarter. All firms in the sample spike at some time 

during the sample period and only observations are included that have not spiked previously. All regressions include controls 

for labor market tightness, management job share, the outsourceable job share, time and cohort x firm fixed effects and 

standard errors are clustered by cohort x firm (*** p<0.01, ** p<0.05, * p<0.1). To treat heteroscedasticity arising from 

sample variance, regressions are weighted by the number of help-wanted ads for each firm-quarter. The columns designate 

different skill groups. The dependent variable in the top panel is the group’s share of job ads; the dependent variable in the 

bottom panel is the log of the number of job ads. IT jobs (SOC 15) are excluded from the dependent variables. 
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Table 5. Information Technology Accounts for Most of the Correlation  

Between Firm Fixed Effects and Skills 
 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Skill measure: All IT+AI Other Cognitive Social Soft Experience Education 

         

Panel A, simple correlation        

Firm FE 2.619*** 0.722*** 1.338*** 0.212*** 0.203*** 0.144** 1.500*** 2.912*** 

 (0.358) (0.069) (0.234) (0.024) (0.065) (0.071) (0.133) (0.353) 

         

Standardized 

coefficient 
0.176 0.246 0.125 0.207 0.111 0.067 0.284 0.203 

         

Observations 205,306 205,306 205,306 205,306 205,306 205,306 205,306 205,306 

R-squared 0.031 0.060 0.016 0.043 0.012 0.004 0.081 0.041 

 

Panel B, software controls        

Firm FE 0.613** 0.075*** 0.557** 0.074*** -0.016 -0.078 0.545*** 1.330*** 

 (0.295) (0.021) (0.222) (0.019) (0.059) (0.064) (0.100) (0.323) 

         

Standardized 

coefficient 
0.041 0.026 0.052 0.072 -0.009 -0.036 0.103 0.093 

         

Software share 36.738*** 5.601*** 20.033*** 2.683*** 4.105*** 4.315*** 13.673*** 31.272*** 

 (1.436) (0.170) (1.084) (0.092) (0.223) (0.261) (0.446) (1.203) 

Software share2 -54.94*** -0.035 -37.63*** -4.21*** -6.26*** -6.79*** -15.34*** -49.85*** 

 (2.254) (0.296) (1.713) (0.146) (0.365) (0.428) (0.736) (1.887) 

         

Observations 205,306 205,306 205,306 205,306 205,306 205,306 205,306 205,306 

R-squared 0.255 0.760 0.125 0.278 0.192 0.143 0.454 0.202 

         

SW share of 

sorting 
77% 89% 58% 65% 108% 154% 64% 54% 

         

Note: This table regresses firm mean levels of skill counts, experience and education required against firm wage fixed effects. 

The unit of observation is the firm. Firm fixed effects are calculated by regressing log salary offered against detailed 

occupation, industry, state, year, labor market tightness, skills requested, education required, experience required, and firm 

fixed effects. IT jobs are excluded for the estimates. The regressions are weighted by the number of job ads and errors are 

robust to heteroscedasticity. The bottom panel ads controls for the share of software developers in firm hiring. The 

standardized coefficients reflect the correlations between the dependent variables and firm fixed effects. Adding controls for 

software developers substantially reduces these correlations. The bottom row displays the magnitude of that decrease as one 

minus the standardized coefficient in Panel B over the standardized coefficient in Panel A. 
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Appendix 

A. Model 

Sorting equilibrium 

We can write the first order condition for 𝑞𝑖, holding the quality of other tasks, 𝑞𝑗, 

constant as 

𝑞𝑗
𝑁−𝐼−1𝑉 − 𝜃ℎ′(𝑞𝑖)𝑙𝑖 = 0. 

Taking the implicit derivative, 

𝑑𝑞𝑖

𝑑𝜃
= −

ℎ′(𝑞𝑖)

𝜃ℎ′′(𝑞𝑖)
< 0. 

The equilibrium value of 𝑞 decreases with 𝜃. From this it follows that  

𝑑 𝜃ℎ′(𝑞𝑖)𝑞𝑖

𝑑𝜃
= ℎ′(𝑞𝑖) − 𝜃(ℎ′′(𝑞𝑖)𝑞𝑖 + ℎ′(𝑞𝑖))

𝑑𝑞𝑖

𝑑𝜃
= −

(ℎ′(𝑞𝑖))
2

ℎ′′(𝑞𝑖)
< 0. 

Since, as in the text,  𝑤𝑗 = 𝜃𝑗ℎ′(𝑞𝑖)𝑞𝑖, the fact that 𝜃𝐻 < 𝜃𝐿 implies that 𝑤𝐻 > 𝑤𝐿  in 

equilibrium. 

Change in between-firm wage ratio 

It is convenient to express output in intensive form, 

𝑦 ≡
𝑌

𝐿
= 𝐴 ∙ 𝑄 ∙ 𝑘𝛼 ,        𝑘 ≡

𝐾

𝐿
 

so that the first order profit maximizing condition for labor and capital can be written 

𝑤 = (1 − 𝛼)𝑦,        𝑘 =
𝛼

𝑟
𝑦. 

Using these, we have31 

∆ ln 𝜔 = ∆ ln(1 − 𝛼𝐻) + ∆ ln
𝑦𝐻

𝑦𝐿
≈ −

1

𝑁 − 𝐼
+ ∆ ln

𝑦𝐻

𝑦𝐿
. 

Further, 

 

31 𝛼𝐻 increases from 
𝐼−1

𝑁
 to 

𝐼

𝑁
. 
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∆ ln
𝑦𝐻

𝑦𝐿
> ∆ ln 𝐴𝐻 + ∆ ln 𝑄𝐻 + 𝛼𝐿∆ ln

𝑘𝐻

𝑘𝐿
. 

The last term, which did not appear in the case of uniform workers and firms, captures the 

shift in capital from low type firms to high type firms as the productivity of the high type 

firms rises, raising the returns for capital per worker. The expression is an inequality because 

it ignores the increase in 𝛼 for high type firms. Also, using the first order condition for 

capital, 

∆ ln
𝑘𝐻

𝑘𝐿
= ∆ ln 𝛼𝐻 + ∆ ln

𝑦𝐻

𝑦𝐿
≈

1

𝐼
+ ∆ ln

𝑦𝐻

𝑦𝐿
. 

Substituting this into the previous expression, 

∆ ln
𝑦𝐻

𝑦𝐿
>

1

1 − 𝛼𝐿
[∆ ln 𝐴𝐻 + ∆ ln 𝑄𝐻 +

1

𝐼
] 

and 

∆ ln 𝜔 > −
1

𝑁 − 𝐼
+

1

1 − 𝛼𝐿
[∆ ln 𝐴𝐻 + ∆ ln 𝑄𝐻 +

1

𝐼
]. 
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B. Skill measures 

Burning Glass standardizes specific skills requested into 16,050 skills. For our analysis, we 

constructed 6 mutually exclusive skill categories: IT, AI, cognitive, social, other soft skills, 

and an additional “other” category. We begin with the definition of social and cognitive skills 

used by Deming and Khan (2018). We then assign IT, AI, and other soft skills using lists of 

skill terms not included in the Deming and Khan categories. This last category is the largest 

and contains many skills related to non-IT technologies and to industry knowledge. For our 

main analysis, we combine the AI and IT categories, but separate analysis indicates that 

spikes at firms that hire AI personnel perform much like firms that apparently use non-AI 

software methods (see Table A7 below). The frequencies with which ads request skills in 

each category are 

Category 

Percent of 

job ads 

Other 68.56 

IT 13.08 

Other soft 8.18 

social 6.92 

cognitive 3.18 

AI 0.08 
 

Cognitive Skills (D. Deming and Kahn 2018) 

These skills include the keywords Problem Solving, Research, Analytical, Critical Thinking, 

Math, and Statistics. 

 

Social Skills (D. Deming and Kahn 2018) 

These skills include the keywords Communication, Teamwork, Collaboration, Negotiation, 

and Presentation. 
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Other Soft Skills* Keywords (adapted from Khaouja et al. (2019) taxonomy):  

Accountability Ethic Social skills 

Active listening Flexibility Speaking 

Adaptive Goal Strategic thinking 

Argumentation Hospitality Time management 

Coaching Impartiality Trustworthy 

Commitment Influence Verbal communication 

Conceptual Initiative Writing 

Conflict management Integrity Written communication 

Coordination Interpersonal communication  

Creativity Kindness  

Curiosity Leadership  

Decision Mentoring  

Decision making Motivated  

Detail Optimism  

Diverse Passion  

Eagerness Persuasion  

Emotional intelligence Self-confidence  

Enthusiasm Self-organized   

 

* These skills also have synonyms, which were also flagged. For full list of synonyms, please refer to Table 

13 in Khaouja et al 2019. To further augment this list, the following commonly requested Burning Glass 

skills not already identified as a social skill were also flagged as soft skills: Planning, Detail-Oriented, 

Building Effective Relationships, Energetic, Positive Disposition, Listening, Team Building, Creative 

Problem Solving, Self-Motivation, Overcoming Obstacles, Multi-Tasking, People Management, Thought 

Leadership, Team Management. This list excludes skills already identified as social or cognitive skills 

above. 

 

 

Other Skills 

Skills that do not belong to one of the other five groups are designated as “other”. These 

skills tend to be industry-specific or firm specific. A majority of skills fit in this category. 

Examples include 5G Wireless, ACL Surgery, Adhesives Industry Knowledge, and APA 

Style Guide. 
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AI Skills (Following Alekseeva et al. (2020)) 

AI ChatBot Latent Semantic Analysis OpenNLP 

AI KIBIT Lexalytics Pattern Recognition 

ANTLR Lexical Acquisition Pybrain 

Apertium  Lexical Semantics  Random Forests 

Artificial Intelligence Libsvm  Recommender Systems 

Automatic Speech 

Recognition (ASR)  Machine Learning  

Semantic Driven Subtractive 

Clustering Method (SDSCM) 

Caffe Deep Learning 

Framework Machine Translation (MT)  Semi-Supervised Learning 

Chatbot Machine Vision 

Sentiment Analysis / Opinion 

Mining 

Computational Linguistics Madlib Sentiment Classification 

Computer Vision Mahout  Speech Recognition 

Decision Trees Microsoft Cognitive Toolkit 

Supervised Learning 

(Machine Learning) 

Deep Learning MLPACK (C++ library) 

Support Vector Machines 

(SVM)  

Deeplearning4j Mlpy TensorFlow 

Distinguo 

Modular Audio Recognition 

Framework (MARF) Text Mining 

Google Cloud Machine 

Learning Platform  MoSes Text to Speech (TTS)  

Gradient boosting MXNet Tokenization 

H2O (software) Natural Language Processing  Torch (Machine Learning)  

IBM Watson 

Natural Language Toolkit 

(NLTK) Unsupervised Learning 

Image Processing  ND4J (software)  Virtual Agents  

Image Recognition Nearest Neighbor Algorithm Vowpal  

IPSoft Amelia Neural Networks Wabbit 

Ithink Object Recognition Word2Vec 

Keras Object Tracking   

Latent Dirichlet Allocation OpenCV  
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IT Skills (Following Burning Glass Technologies Skill Cluster Families) 
Microsoft Development Tools Enterprise Content Management 

(ECM) 

Productivity Software 

Document Management Systems Internet of Things (IoT) File Transfer Software 

General Networking Enterprise Management Software Project Management Software 

Software Quality Assurance Database Administration Virtual Private Networks 

Artificial Intelligence Android Development Internet Standards 

Operating Systems Mobile Development Remote Desktop Software 

JavaScript and jQuery IT Automation Data Wrangling 

Distributed Computing Configuration Management Programming Principles 

Application Programming Interface (API) Anti-Malware Software Network File System (NFS) 

Systems Administration Middleware Integrated Development Environments 

(IDEs) 

Web Development Scripting Disk Imaging 

Scripting Languages Java Microsoft Office and Productivity Tools 

Cloud Solutions Database Management Systems Content Management Systems 

Cloud Computing Web Servers Firewall Software 

Software Development Tools Version Control Firmware 

Data Storage iOS Stack Graph Databases 

Virtual Machines (VM) Basic Computer Knowledge Identity Management 

Big Data Application Development Partitioning Software 

Network Security Network Protocols Video Conferencing Software 

Data Warehousing Technical Support Computer Hardware 

Enterprise Messaging Application Security Internet Services 

Cloud Storage Typesetting Software Internet Security 

XML Markup Languages Geographic Information System 

(GIS) Software 

Help Desk Support 

Extraction, Transformation, and Loading 

(ETL) 

Data Compression Management Information System (MIS) 

System Design and Implementation Assembly Languages Intelligent Maintenance Systems 

Network Configuration Test Automation Query Languages 

Data Synchronization Telecommunications Load Balancing 

Other Programming Languages Compiling Tools Location-based Software 

Data Management Enterprise Resource Planning (ERP) Video Compression Standards 

Web Content Backup Software Microsoft SQL Extensions 

SAP Web Design Advanced Microsoft Excel 

Archiving Software Rule Engines SQL Databases and Programming 

Cybersecurity Internet Protocols Device Management 

NoSQL Databases Extensible Languages Microsoft Windows 

Software Development Principles C and C++ Augmented Reality / Virtual Reality (AR / 

VR) 

IT Management Desktop and Service Management Enterprise Information Management 

Software Development Methodologies Mainframe Technologies Oracle 

Content Delivery Network (CDN) Parallel Computing Servers 

Networking Hardware Cache (computing) Data Collection 

Information Security PHP Web Wiki 

Note: There are 1,687 unique skills that Burning Glass identifies as Information Technology skills. From 

there, they sort these skills into broader categories, which are listed in the table below. Within the category 

“Microsoft Development Tools” is the Microsoft Office suite, which we omit as an IT skill. We exclude 

skills flagged as social, cognitive or AI skills. These specific skills include Communications Protocols, 

Data Communications, Global System for Mobile Communications, Joint Worldwide Intelligence 

Communications System, Machine-To-Machine (M2M) Communications, Oracle Fusion Middleware 

Collaboration Suite, and Voice Communications. 
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C. Lumpy Investment 

Figure A1. Lumpiness of Firm Investments 

 

Note: This figure plots changes in software developer share of job advertisements from the average of the 

previous 4 quarters. The line shows a normal density distribution with the same mean and standard 

deviation. The distribution is clearly leptokurtic with a peak at zero and fat, “lumpy” tails. 
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Figure A2. Software Hiring Increases Persist After Spikes 

 

Note: This figure plots an event study of the share of software hiring around hiring spikes. There appears to 

be a slight anticipation effect, a distinct spike (the threshold is .01), and sustained hiring of software 

developers at a slightly lower level after the spike. 
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Figure A3. Skill request trends over time 

 

 

Note: This figure shows raw trends in skill requests for both spiking (orange) and non-spiking (blue) firms 

over time. Spiking firms have higher levels of skill requests throughout the sample. 
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D. Descriptive Statistics and Robustness Checks 

Table A1 Summary Statistics 

 (1) (2) (3) 

Sample: Full sample Never-Spikers Spikers 

Weighted     

Management Job Share 0.126 0.120 0.139 

 (0.190) (0.219) (0.0960) 

    

Outsourceable Job Share 0.071 0.078 0.056 

 (0.183) (0.209) (0.101) 

    

Labor Market Tightness 0.795 0.837 0.700 

 (0.319) (0.364) (0.139) 

    

IT Share 0.095 0.074 0.108 

 (0.160) (0.166) (0.155) 

    

Residual Wage 0.012 -0.002 0.023 

 (0.291) (0.336) (0.250) 

    

College Required 0.433 0.416 0.471 

 (0.279) (0.303) (0.213) 

    

Routine Cognitive 0.298 0.294 0.307 

 (0.284) (0.325) (0.157) 

    

Routine Manual 0.207 0.224 0.170 

 (0.304) (0.339) (0.201) 

    

Non-Routine Cognitive 0.444 0.423 0.490 

 (0.343) (0.377) (0.243) 

    

Non-Routine Manual 0.158 0.177 0.115 

 (0.285) (0.320) (0.177) 

    

Number of Skills 8.230 7.385 10.062 

 (4.895) (5.210) (3.484) 

Unweighted    

Number of Ads/Quarter 85.380 5.980 164.780    

 (86.637) (1.028) (47.623) 

    

Total Firms 2,147,578 2,131,972 15,606 

Note: Means given with Standard Deviation in parentheses. Weighted estimates use analytical weights by 

number of job advertisements. 
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Table A2. Correlations of Software Spikes and Possibly Correlated Variables 

 Lagged Independent Variables 

 (1) (2) (3) (4) (5) 

Panel A. All Firms       

      

Log Job Ads 0.034***    0.035*** 

 (0.001)    (0.001) 

Software share  -0.011   0.036*** 

  (0.009)   (0.008) 

Outsourceable jobs   -0.042***  -0.062*** 

   (0.013)  (0.013) 

Management jobs    0.034*** 0.056*** 

    (0.011) (0.010) 

      

Observations 89,928 89,928 89,928 89,928 89,928 

R-squared 0.023 0.000 0.000 0.000 0.025 

Panel B. Compustat      

      

Labor Productivity 0.006*    0.016*** 

 (0.003)    (0.004) 

Log COGS  0.014***    

  (0.002)    

Log Capital   0.008***  0.014*** 

   (0.002)  (0.002) 

Sales Growth    0.017 0.028** 

    (0.012) (0.012) 

      

Observations 14,122 14,122 14,122 14,122 14,122 

R-squared 0.001 0.006 0.003 0.000 0.007 

Note: This table presents simple OLS regressions between a spike and lagged key variables from both 

Burning Glass and Compustat. All standard errors are clustered at the firm level. (*** p<0.01, ** p<0.05, * 

p<0.1) 
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Table A3 Sensitivity Table 

 Panel Size Spike Threshold 

 (1) (2) (3) (4) (5) (6) 

 t  4 t  5 t  6 .005 .01 .015 

A. Dependent variable: number of specific skills requested 

Post treatment 0.283*** 0.318*** 0.470*** 0.356*** 0.318*** 0.253*** 

 (0.076) (0.071) (0.087) (0.068) (0.071) (0.074) 

Labor market tightness -0.229 -0.176 -0.197 0.264 -0.176 -0.173 

 (0.263) (0.346) (0.444) (0.358) (0.346) (0.363) 

Management jobs 4.074*** 5.488*** 5.516*** 4.821*** 5.488*** 4.916*** 

 (0.329) (0.386) (0.576) (0.574) (0.386) (0.334) 

Outsourceable jobs -5.701*** -7.183*** -7.799*** -6.707*** -7.183*** -6.324*** 

 (0.951) (1.310) (1.655) (1.287) (1.310) (1.026) 

       

Observations 162,924 102,086 61,377 102,520 102,086 98,609 

R-squared 0.892 0.873 0.870 0.888 0.873 0.879 

 

B: Dependent variable: Log Residual Pay 

Post treatment 0.078*** 0.087*** 0.072*** 0.074*** 0.087*** 0.253*** 

 (0.022) (0.023) (0.024) (0.024) (0.023) (0.074) 

Labor market tightness -0.133 -0.279* -0.179 -0.326** -0.279* -0.173 

 (0.128) (0.147) (0.166) (0.130) (0.147) (0.363) 

Management jobs -0.091 0.016 0.198 0.055 0.016 4.916*** 

 (0.091) (0.101) (0.151) (0.107) (0.101) (0.334) 

Outsourceable jobs -0.098 0.026 0.270 -0.105 0.026 -6.324*** 

 (0.126) (0.129) (0.290) (0.149) (0.129) (1.026) 

       

Observations 42,387 29,437 19,395 28,724 29,437 28,924 

R-squared 0.522 0.476 0.411 0.462 0.476 0.450 

Note: This table shows how estimates change from changing the size of the balanced panel or threshold for 

defining a spike. Columns (2) and (5) correspond to estimates in Table 2 Column (1). Construction of 

panels and additional controls follow those described in Table 2. The unit of observation is firm by quarter. 

All firms in the sample spike at some time during the sample period and only observations are included that 

have not spiked previously. All regressions include time and cohort x firm fixed effects and standard errors 

are clustered by cohort x firm (*** p<0.01, ** p<0.05, * p<0.1). 
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Table A4 Results for Full Sample And Results for Sample Restricted to Later-Spiking Firms 

 (1) (2) (3) (4) 

 Number of Skills Requested Log Residual Wage 

Sample Later-spiking Full Sample Later-spiking Full Sample 

     

Post treatment 0.318*** 0.211*** 0.087*** 0.074*** 

 (0.071) (0.068) (0.023) (0.020) 

Labor market tightness -0.176 -0.105 -0.279* -0.149*** 

 (0.346) (0.115) (0.147) (0.043) 

Management jobs 5.488*** 3.249*** 0.016 -0.159*** 

 (0.386) (0.106) (0.101) (0.036) 

Outsourceable jobs -7.183*** -2.967*** 0.026 0.010 

 (1.310) (0.270) (0.129) (0.045) 

     

Observations 102,086 1,789,706 29,437 387,844 

R-squared 0.873 0.890 0.476 0.513 

Note: Our main analysis uses panels with control firms that spike subsequently (“later-spiking”). This table 

compares this sample with a sample that also includes control firms that never spike. Columns (1) and (3) 

correspond to Column (1) in Table 2, estimating stacked difference-in-differences regressions where a 

balanced panel (t-5 to t+5) is included for each cohort based on spiking year. The unit of observation is 

firm by quarter. All regressions include time and cohort x firm fixed effects and standard errors are 

clustered by cohort x firm (*** p<0.01, ** p<0.05, * p<0.1). In Columns (1) and (3) firms in the sample 

spike at some time during the sample period and only observations are included that have not spiked 

previously. In Columns (2) and (4) we remove this restriction, consequently broadening our sample size. 

The estimates are similar, but we prefer the estimates provided in the main text.  
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Table A5 Firm Fixed Effects 

 (1) 

 Log of Avg Salary 

  

Other Skill Count 0.003*** 

 (0.000) 

Cognitive Count 0.006*** 

 (0.000) 

Social Count 0.007*** 

 (0.000) 

AI Count 0.035*** 

 (0.002) 

IT Count 0.012*** 

 (0.000) 

Other Soft Count 0.005*** 

 (0.000) 

Minimum of the required experience range in years 0.098*** 

 (0.000) 

Experience Required Squared -0.005*** 

 (0.000) 

V/U Labor Market Tightness -0.001 

 (0.001) 

  

Observations 4,075,295 

R-squared 0.688 

Note: This table presents the coefficients used to estimate firm fixed effects. All regressions include 

occupation, education level, year, and state fixed effects and standard errors are heteroskedastic robust (*** 

p<0.01, ** p<0.05, * p<0.1). Observations are weighted by occupation share in the Current Population 

Survey. 
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Table A6 Non-IT Producing Firms 

 (1) (2) (3) (4) 

 Number of Skills Requested Log Residual Wage 

Sample Full Non-IT Full Non-IT 

     

Post treatment 0.318*** 0.358*** 0.087*** 0.091*** 

 (0.071) (0.078) (0.023) (0.025) 

Labor market tightness -0.176 -0.094 -0.279* -0.294* 

 (0.346) (0.363) (0.147) (0.151) 

Management jobs 5.488*** 5.900*** 0.016 -0.005 

 (0.386) (0.430) (0.101) (0.107) 

Outsourceable jobs -7.183*** -7.132*** 0.026 0.025 

 (1.310) (1.392) (0.129) (0.135) 

     

Observations 102,086 84,261 29,437 25,597 

R-squared 0.873 0.879 0.476 0.480 

Note: This table compares the outcomes from Table 2 Column (1) to the same specification excluding IT-

producing industries. We defined IT-producing industries as 2-digit NAICS codes 51 and 54. To determine 

a firm’s industry from Burning Glass, we assigned the modal 2-digit industry listed in a firm-year. Columns 

(1) and (3) correspond to Column (1) in Table 2, estimating stacked difference-in-differences regressions 

where a balanced panel (t-5 to t+5) is included for each cohort based on spiking year. The unit of 

observation is firm by quarter. All regressions include time and cohort x firm fixed effects and standard 

errors are clustered by cohort x firm (*** p<0.01, ** p<0.05, * p<0.1). 
 

  



 57 

Table A7. Firms Using AI and Automation Behave Similarly 

 (1) (2) (3) (4) 

VARIABLES Number of 

skills requested 

Log Residual 

Wage 

Number of 

skills requested 

Log Residual 

Wage 

     

Non-AI x post treatment 0.330*** 0.074***   

 (0.089) (0.024)   

AI x post treatment 0.304*** 0.096***   

 (0.081) (0.027)   

Non-automation x post treatment   0.040 0.100*** 

   (0.086) (0.037) 

Automation x post treatment   0.360*** 0.086*** 

   (0.074) (0.023) 

Labor market tightness -0.177 -0.277* -0.174 -0.280* 

 (0.346) (0.146) (0.345) (0.147) 

Management jobs 5.492*** 0.012 5.467*** 0.017 

 (0.387) (0.102) (0.386) (0.101) 

Outsourceable jobs -7.179*** 0.026 -7.199*** 0.026 

 (1.308) (0.129) (1.306) (0.129) 

     

Observations 102,086 29,437 102,086 29,437 

R-squared 0.873 0.476 0.873 0.476 

Note: these coefficients are from stacked difference-in-differences regressions where a balanced panel (t-5 

to t+5) is included for each cohort based on spiking year. The unit of observation is firm by quarter. All 

firms in the sample spike at some time during the sample period and only observations are included that 

have not spiked previously. All regressions include time and cohort x firm fixed effects and standard errors 

are clustered by cohort x firm (*** p<0.01, ** p<0.05, * p<0.1). To treat heteroscedasticity arising from 

sample variance, regressions are weighted by the number of help-wanted ads for each firm-quarter. IT jobs 

(SOC 15) are excluded from the regressions. AI and automation are identified by keywords for skills 

requested. 
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Table A8. Placebo: Spikes of engineers and technicians do not display similar effects. 
Spikes defined for engineers (SOC 17) and technicians (SOC 19) excluding electrical 
engineers (SOC 172071) 

 (1) (2) 

VARIABLES Number of 

skills requested 

Log Residual 

Wage 

   

Post treatment 0.094 0.032 

 (0.065) (0.033) 

Labor market tightness -0.262 -0.129 

 (0.321) (0.127) 

Management jobs 5.136*** -0.245 

 (0.393) (0.163) 

Outsourceable jobs -6.039*** -0.299*** 

 (0.655) (0.100) 

   

Observations 97,526 28,920 

R-squared 0.884 0.464 

Note: these coefficients are from stacked difference-in-differences regressions where a balanced panel (t-5 

to t+5) is included for each cohort based on spiking year. The unit of observation is firm by quarter. All 

firms in the sample spike at some time during the sample period and only observations are included that 

have not spiked previously. All regressions include time and cohort x firm fixed effects and standard errors 

are clustered by cohort x firm (*** p<0.01, ** p<0.05, * p<0.1). To treat heteroscedasticity arising from 

sample variance, regressions are weighted by the number of help-wanted ads for each firm-quarter. IT jobs 

(SOC 15) are excluded from the regressions.  
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Table A9. Tests of Pre-trends 
F tests of the null hypothesis that event study coefficients are jointly zero prior to the spike, 

𝛿𝑡−2 = 𝛿𝑡−3 = 𝛿𝑡−4 = 0. 
 

Outcome variable Probability value 

Log residual wage 0.723 

Skill measures 

All 0.633 

IT+AI 0.371 

Other 0.553 

Cognitive 0.359 

Social 0.196 

Soft 0.941 

Experience 0.972 

Education 0.709 

Note: These event study regressions are weighted by the number of ads per quarter and they 
include fixed effects for quarter and cohort by firm. 
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Introduction 

The skill-biased technical change (SBTC) hypothesis holds that technology 

complements some groups of workers. In contrast, recent economic models of automation 

posit that automation technologies strictly substitute machines for workers.1 Labor 

displacement is seen by some as the main source of growing economic inequality over the 

last four decades (Acemoglu and Restrepo 2021), leading to calls for redistribution (Korinek 

and Stiglitz 2018; Benzell et al. 2016) or policies to slow the growth of automation with 

economic incentives or attempts to influence development engineers (Acemoglu 2021; 

Brynjolfsson 2021). 

Yet some observers have noted that automation may also complement labor in 

important ways (Autor 2015; Bessen 2015). By definition, automation replaces humans with 

machines on certain tasks. But automation could, at the same time, complement workers on 

other tasks. This paper presents a model explaining why and how such synergy might occur 

and empirical evidence that it does occur. The result is a much richer picture of automation 

that is both cost-reducing and quality-improving, that replaces workers but also increases the 

demand for diverse skills in a broad range of occupations. 

This depiction is important because it helps explain important features about income 

inequality. Indeed, labor displacement models do not address a key feature of the rise in 

inequality since 1980, namely that it has largely occurred between firms rather than within 

firms.2 Labor displacement affects inequality because it decreases aggregate employment 

demand for some skill groups relative to others, thus leading to growing wage differences in 

equilibrium. But in these models, the market wages of different skill groups affect all firms, 

changing within-firm inequality.3 However, the models can be extended: if automation 

increases the returns to quality on non-automated tasks, then automating firms might pay 

more than others and hire higher quality workers, thus increasing sorting. 

 

1 (Autor, Levy, and Murnane 2003; Acemoglu and Autor 2011; Brynjolfsson and McAfee 2014; Acemoglu and 
Restrepo 2018a; 2018c; Benzell et al. 2016; Korinek and Stiglitz 2018; Hémous and Olsen 2022). 

2 (Card, Heining, and Kline 2013; Barth, Davis, and Freeman 2018; Song et al. 2019; Lachowska et al. 2020). 

3 Because firms differ in the extent to which they employ different skill groups, these differences might 
secondarily affect between-firm pay, but only in dilute form. Also, firms might reorganize production in 
response. For instance, Song et al. (2019) argue that coincident outsourcing of low paying jobs might mask the 
extent of within-firm changes. We test for this explanation below. 
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In popular discourse, automation is about reducing costs by cutting labor, not about 

improving quality. But that is not necessarily the case. Automation includes robots that 

replace manual labor, but it also includes productivity tools such as spreadsheets (automating 

the calculation) used by white collar workers or AI tools that automate predictions 

augmenting humans.4 Indeed, researchers have found that advanced technologies are often 

directed more to improving product quality or creating new products with better quality than 

they are to saving cost (Brynjolfsson and Hitt 2000; Bresnahan, Brynjolfsson, and Hitt 2002; 

Bessen et al. 2018; Babina et al. 2020; Hirvonen, Stenhammer, and Tuhkuri 2021). 

Automated machines can spin finer yarn than humans, they can allow machinists and 

surgeons to operate at higher precision, and AI systems can make more accurate predictions.  

Why is quality important for technology? Quality on complementary tasks is critical 

to many production processes. In Kremer’s (1993) famous example, the failure of one part 

doomed the space shuttle Challenger. Poorly performed tasks can create defects, reducing the 

value of output, or they can halt production, slowing the rate of output, or they can reduce 

the reliability of the product. Yet the quality of task performance often depends critically on 

the quality of labor, on the ability of labor to perform specific tasks. Elon Musk’s highly 

automated Tesla factory fell far short of production quotas because, in his words, “humans 

are underrated.” Clark (1987), comparing workers at highly automated textile mills around 

the world, found six-fold differences in output per worker, even comparing workers at 

similar mills using identical equipment and with similar British managers. The differences lay 

in the varied ability and willingness of these workers to perform non-automated tasks 

reliably and quickly (see the example below).  

This means that there are important dimensions to skill beyond educational or 

occupational skill groups and, for this reason, analyzing inequality with skill groups alone is 

inadequate.5 In our model, the quality of task output depends on the specific skill or effort of 

 

4 And although robots have featured in recent economic papers, US investment in robots was only $7 billion in 
2019, while investment in software, studied here, was over $400 billion (US Census). 

5 Lindenlaub (2017) argues that multi-dimensional skills are needed to understand the link between sorting and 
technology. It is well-recognized that demographic skill groups are at best crude indices of the actual multiple 
dimensions of skill (Acemoglu 2002, Section 7). Skill groups have other limitations for the analysis of income 
inequality. For one thing, endogenous selection into skill groups, such as changing access to college education, 
means that the actual skills of demographic groups change over time. Technology also changes the skills of 
occupational groups over time (Autor, Levy, and Murnane 2003; Spitz-Oener 2006). Also, there is great and 
changing variance of wages within skill groups (Hunt and Nunn 2019). 
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the worker performing the task. But workers differ in their disutility of expending effort on 

task performance or on learning new skills. Workers with high (low) disutility comprise a low 

(high) skill group—these are the ones likely to get less (more) education, for instance. Hence, 

skill groups defined by education or occupation matter, but so, too, do task-specific skill 

levels. Employers can improve product quality along two margins: by hiring workers from a 

high skill group and by providing them stronger performance incentives. In this paper, we 

measure effects on both skill groups and on task-specific skills. 

To model automation, we extend the Acemoglu-Restrepo model of automation 

(2018a; 2018c) to include variable task quality as modeled by Kremer and Maskin (Kremer 

1993; Kremer and Maskin 1996). Our model provides a natural explanation for the rise in 

sorting of skilled workers to high-paying firms. The model generates a Remainder Effect 

(Bessen 2015): automating some tasks raises the demand for skill and effort on 

complementary non-automated tasks. The relative importance of between-firm and within-

firm wage gaps corresponds to the two margins along which firms manage skill. Between-

firm pay differences are driven by differences in labor quality while within-firm pay 

differences are driven by the relative displacement of different skill groups. This implies that 

the impact of automation on wage inequality—and the policies needed to counter this 

inequality—depend on the relative importance of labor displacement and labor quality 

enhancement. The model also explains why successful implementation of information 

technologies is linked to management practices that provide stronger incentives for 

performance (Bloom, Sadun, and Van Reenen 2012). 

To test the model predictions, we use rich data on the skills that firms demand and 

the pay that they offer in online help wanted ads. The skills requested in job ads allow us to 

identify multiple dimensions of specific skills that employers apparently value as important 

for achieving quality output, for instance, affecting firm market value (D. Deming and Kahn 

2018; Bana 2021). These include education and experience required, measures of cognitive 

and social skills, other soft skills, information technology skills, and skills related to other 

technologies and market knowledge.  

We test how the demands for these skills are related to firm investments in own-

developed software. Firms have been investing heavily in developing information technology 

systems for their own use, including artificial intelligence applications (AI). Self-developed 

and custom software grew to $241 billion in 2020, excluding software developed for use in a 
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product and much of this investment is in systems that automate business processes such as 

enterprise resource planning. Following some literature, we measure the adoption of these 

technologies as the share of software developers in a firm’s total hiring (Tambe and Hitt 

2012; Tambe et al. 2019; Bessen 2020; Harrigan, Reshef, and Toubal 2021). The entire 

investment in these technology platforms includes complementary investments in hardware, 

packaged software, and organizational capabilities.  

We first test whether skills demanded and pay increase when firms make major 

investments in their internal information technology. We identify these episodes as 

substantial increases in relative hiring of software developers, so-called investment “spikes,” 

and we analyze them using a difference-in-differences methodology.6 This method helps 

isolate the effects of technology from many possible confounders and we also add controls 

for outsourcing, labor market conditions, management changes, and productivity and 

demand shocks. Following a software spike, firms increase their demand for skills across all 

categories, both for jobs that require a college education as well as jobs that do not. Firms 

also significantly increase the pay they offer, after controlling for job characteristics, to most 

skill groups, thus increasing between-firm pay differences among new hires.  

Because spiking firms are a select group, this analysis might not reflect the role of 

information technology in sorting more generally. We also look at the relationship between 

investment in own-developed software and the demand for skills in the universe of online 

help wanted ads. We first calculate firm pay fixed effects by regressing salaries offered 

against job and firm characteristics. These fixed effects are correlated with our various skill 

measures, indicating sorting. But firm investment in own-developed software also correlates 

with both the firm fixed effects and skill measures. When software is added to the regression 

of skill against firm fixed effects, the correlations are substantially reduced. Software 

accounts for most of the correlations between firm fixed effects and skills. The prominent 

relationship between information technology and sorting and the relatively recent shift of 

investment to information technology suggests that much of the rise of sorting can be 

accounted for by this technology. 

 

6 A variety of paper have begun using technology spikes and difference-in-differences or event studies to 
analyze technology impacts (Bessen and Righi 2019; Bessen et al. 2022; Humlum 2019; Domini et al. 2021; 
Aghion et al. 2020; Hirvonen, Stenhammer, and Tuhkuri 2021; Rodrigo 2021). 
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To summarize, this paper makes several contributions. First, we develop a model of 

automation that includes both cost reduction and quality enhancement, thus generating a 

richer set of outcomes. The model accounts for automation effects on both within-firm and 

between-firm pay inequality, reflecting the relative extent to which automation substitutes or 

complements workers. This difference provides a tool to estimate the relative importance of 

substitution/complementation and implies different policy choices to counter inequality. 

Second, we study the micro-level impact of proprietary information technology to 

test key aspects of the model. We find that when firms invest in these systems, their demand 

increases for a diverse set of technical, cognitive, and social skills and these demand increases 

occur across skill groups—across jobs requiring a college degree and those that do not, 

across routine jobs as well as nonroutine. Moreover, this increased demand is reflected in 

higher pay offered, after controlling for job characteristics, contributing to growing between-

firm pay differences. While we also find evidence of labor displacement in manual jobs, our 

overall findings differ from predictions of models of pure labor displacement and from 

models of skill-biased technical change. In both the labor displacement and skill-biased 

change stories, technology only affect limited groups of workers; in our story, it affects most 

groups of workers. 

Third, we explore how much of the overall sorting of skilled workers to high-paying 

firms can be accounted for by proprietary information technology systems by looking at the 

correlations between firm fixed effects and skills. We find that the majority of these 

correlations is accounted for by this technology, suggesting that the increase in sorting may 

be closely related to the rise of proprietary information technology. 

Of course, there are important non-technological factors that may contribute to 

sorting including rent-sharing, firm size (Eeckhout and Kircher 2018), search frictions 

(Burdett and Mortensen 1998), and monopsony (see for instance Card et al. 2018). Cortes et 

al. (2020) model sorting arising from skill-biased technical change. In empirical research, 

technology has been associated with between-firm wage differences (M. Doms, Dunne, and 

Troske 1997; Dunne et al. 2004; Barth et al. 2020) and the rise in information technology is 

coincident with the rising importance of sorting to inequality. But little research connects the 

actual adoption of technology with changes in skill demand. Some research has explored the 

effects of the adoption of computers or automation technology on firm wages in difference-



 7 

in-differences or event studies, generally finding a rise in firm pay following adoption.7 

However, the increase in firm pay could arise from rent sharing rather than from greater 

demand for skills. Dillender and Forsythe (2019), in an approach similar to ours, use Burning 

Glass data to identify firm computer technology adoption; they find greater skill demand and 

higher pay for office and administrative support workers, suggesting that this technology is 

labor augmenting. Other papers find that computers or AI change skill demands (Autor, 

Levy, and Murnane 2003; Spitz-Oener 2006; Acemoglu et al. 2020). 

Some studies use worker fixed effects from AKM regressions as a proxy for skill, but 

these might also reflect rents arising from search frictions (Abowd, Kramarz, and Margolis 

1999; Bagger and Lentz 2019). Hakanson et al. (2020) find that worker sorting across firms 

by ability measured using standardized test scores is related to the rising information 

technology sector, but they lack firm-level measures of technology. Deming (2017; see also 

Aghion et al. 2019) finds an association between information technology and soft skills. This 

paper studies firm-level adoption of technology and both the subsequent firm demand for 

specific skills and firm pay offers. 

A historical example 

To fix ideas, it is helpful to look at an example of the Remainder Effect. There is 

sufficient historical data available for mills weaving coarse cotton cloth during the 19 th 

century in the U.S. to construct an engineering production function that specifies the 

weavers’ main tasks, the frequency of their occurrence, typical times to perform those tasks, 

and how those tasks were automated over time (this section draws from Bessen 2003; 2012; 

2015). Although the process was highly automated, humans still had to perform some critical 

tasks. When bobbins ran out of thread, humans replenished them; when the edges of the 

cloth pulled inward as the loom wove, humans straightened them; when threads broke, 

humans had to stop the machines, unravel the defective cloth, fix the break, and restart the 

machines.  

 

7 Gaggl and Wright (2017) find that computers raise wages in small firms, mostly in managerial, professional, 
and technical occupations. Bessen et al. (2022) find that automation raises wages in large firms, but wages 
decline in small firms. Acemoglu, Lelarge, and Restrepo (2020) find that robots raise wages in some 
regressions. Humlum (2019) and Rodrigo (2021) also find that robots increase pay. Graetz and Michaels (2018) 
find a similar increase at the industry level. 
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The productivity of a weaver depended critically on her skill at performing these 

specific tasks and the effort she applied to them. Many tasks were performed while the loom 

was stopped, so the weaver’s speed affected the rate of output. The reliability of weaver’s 

performance determined whether subsequent defects or failures would occur with greater or 

lesser frequency. The weaver’s attentiveness monitoring the looms affected how quickly 

faults could be detected and fixed. And of course, the quality of the weaver’s performance 

also affected the occurrence of defects that reduced the value of the cloth. 

These skills had to be learned on the job. New hires went through a learning process 

that quadrupled their output per hour over the course of a year or so. Treating foregone 

output as a human capital investment (Becker 1993), the human capital of these supposedly 

“unskilled” weavers was substantial, roughly equivalent to the investments in adult male 

tradesmen who went through apprenticeships (the weavers were mainly young women). 

These skills contributed substantially to the rise in productivity over the 19th century. The 

labor time required per yard of cloth fell by 98%. However, analysis using the engineering 

production function shows that new inventions cannot account for all this decrease; about a 

quarter is due, instead, to better quality of labor. 

As automation progressed over the century, many of these tasks were automated and 

no significant new tasks were added in this sector. As weavers performed fewer tasks per 

yard of cloth, they were assigned more looms to tend, so that their skills on these tasks 

remained important for productivity. In fact, their skills became even more important. 

Human capital investments increased (learning curves became steeper) and real pay for 

weavers rose substantially. Automation substantially increased the returns to skill on the 

remaining non-automated tasks. 

Model 

Basic Setup 

Tasks and Automation 

Our model is a combination of cost saving automation models by Acemoglu and 

Restrepo (2018a; 2018c) and models of production quality by Kremer and Maskin (Kremer 
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1993; 1996). We interpret Acemoglu and Restrepo’s model as providing a measure of 

potential output while Kremer’s model relates actual output to potential output, after 

accounting for quality-related failures.  

We use a simplified version of the Cobb-Douglas instance of Acemoglu and 

Restrepo’s model (2018a) with constant returns to scale. Let there be N tasks. We keep the 

number of tasks fixed, ignoring the creation of new tasks, which we discuss further below. 

Because the production function has constant returns to scale, we allow an indefinite 

number of firms. Let the tasks be ordered so that the first 𝐼 tasks are automated and the 

remaining 𝑁 − 𝐼 tasks are performed by labor. The ith automated task uses 𝑘𝑖  capital and 

the jth human task uses 𝑙𝑗 labor. Letting the firm’s total capital 𝐾 = ∑ 𝑘𝑖
𝐼
𝑖=1  and total labor  

𝐿 = ∑ 𝑙𝑖
𝑁
𝑖=𝐼+1 , equilibrium potential output can be written, under some assumptions (see 

Acemoglu and Restrepo 2018a, equation 3), 

𝑉 = 𝐴(𝐼)𝐾𝛼𝐿1−𝛼 ,          𝛼 ≡
𝐼

𝑁
,

𝑑𝐴

𝑑𝐼
> 0. (1) 

where 𝛼 is capital’s share of output and 𝐴(𝐼) is a measure of Hicks-neutral productivity, 

which we assume to be increasing in the number of automated tasks. We assume that 𝐼 is 

exogenously determined by the state of technology. Firms, however, pay a fixed fee to adopt 

the latest technology so that in some circumstances, only more profitable firms choose to 

adopt (for a full model of adoption see Bessen et al. 2022 Appendix). 

Quality 

However, as Kremer (1993) observes, not all potential output is realized if tasks are 

performed imperfectly. In some production functions, failure of a critical task reduces 

output to zero (O-ring); in others, imperfect task output reduces the value of output; in yet 

others, task failures delay production (weaving), reducing the rate of output. The critical 

assumption here is that quality and quantity are not perfect substitutes. If quality and 

quantity were perfect substitutes, then output could simply be measured in quality-adjusted 

units and there would be no need to account for quality separately. However, as Kremer and 

others argue, there are many important instances where this substitution is imperfect, e.g., 

two mediocre surgeons are not equivalent to one surgeon whose patients have twice the 

survival rate (Rosen 1981; Kremer 1993). 
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It is standard in reliability engineering that the probability of failure increases with 

the number of tasks prone to failure. Multiple tasks provide multiple opportunities to fail. 

Let 𝑞𝑖 , 0 ≤ 𝑞𝑖 ≤ 1 be the quality of performance of the ith task at a given scale of 

production. Perfect performance is designated by 𝑞𝑖 = 1 and complete failure by 𝑞𝑖 = 0. 

Then the actual output can be written8 

𝑌 = 𝑄 ∙ 𝑉,      𝑄 ≡ ∏ 𝑞𝑖 .

𝑁

𝑖=1

(2) 

To keep things simple, we assume that machines perform their tasks perfectly,  

𝑞𝑖 = 1, while humans are always at least a bit imperfect.9 For the tasks performed by labor, 

task quality will depend on worker skill or effort. The quality of task production can vary 

with general skills of the workers performing the task, but in many cases, it will surely 

depend on task-specific and technology-specific skills. Without loss of significant generality, 

we assume that workers are assigned to a single task and all workers assigned to a task have 

the same quality. This way worker skills are task specific. The quality of each task performed 

by labor is then 𝑞𝑖 = 𝑓(𝑒𝑖) where 𝑒 is effort per worker, either effort expended on the task 

or effort expended on learning new skills (see below). Then we assign 

𝑞𝑖 = {
1, 𝑖 ≤ 𝐼

𝑓(𝑒𝑖), 𝐼 < 𝑖 ≤ 𝑁
} . (3) 

We assume that 𝑓(𝑒𝑖) is a monotonically increasing, twice-differentiable continuous 

function, 𝑓′ > 0, 𝑓′′ < 0, and lim
𝑒→∞

𝑓(𝑒) < 1 (humans are imperfect).  

Labor Quality 

Workers deliver a fixed amount of labor—there is no tradeoff with leisure time—but 

the quality of that labor varies. In a single-period model it is simplest to represent labor 

quality with a single variable, 𝑒, which we might think of as effort, either expended on the 

 

8 Where q represents a probability of successful completion, then Y is expected output and we assume that 
firms are risk neutral.  

9 A more general model could consider cases where machines have low quality but high efficiency and cases 
where inefficient machines are adopted because they have higher quality. 
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task or expended on learning new skills.10 Given a set of equilibrium prices, each worker’s 

utility can be written as a function of their wage and the effort they exert, 𝑈 = 𝑈(𝑤, 𝑒). Let 

𝑈(𝑤, 𝑒) = 𝑤 − 𝜃𝑗𝑔(𝑒),       𝑔′ > 0, 𝑔′′ > 0, 𝜃𝑗 ≥ 1 

where 𝜃𝑗 represents the jth worker’s disutility of effort. Workers share the same preferences 

except for this disutility parameter.  

Importantly for our analysis, there are two dimensions to labor quality: the worker’s 

type or skill group, 𝜃𝑗, and the actual effort/skill exerted at the worker’s job, 𝑒. We assume 

that employers (but not third parties) can costlessly observe both 𝜃𝑗 and effort 𝑒. Employers 

can then elicit greater or lesser 𝑒 by using greater or smaller performance pay incentives. 

They can also influence the labor quality of their workforces by hiring workers of different 

types, 𝜃𝑗, who will be more or less responsive to those incentives.  

Employers can elicit a desired level of effort by offering a two-part wage, with fixed 

amount 𝑤𝑢 and performance incentive 𝑤𝑠 such that 𝑊 = 𝑤𝑢 + 𝑤𝑠 ∙ 𝑒. Utility maximization 

for the jth worker occurs when 
𝑤𝑠

𝜃𝑗
= 𝑔′(𝑒), yielding a unique level of effort, 𝑒̂(𝑤𝑠 𝜃𝑗⁄ ), and 

the corresponding task quality, 𝑓 (𝑒̂(𝑤𝑠 𝜃𝑗⁄ )). 

It is convenient to invert this function, yielding 

𝑤(𝑞) = 𝑤𝑢 + 𝜃𝑗 ∙ ℎ(𝑞),       ℎ′, ℎ′′ > 0,    lim
𝑞→1

ℎ′(𝑞) = ∞. 

We assume competitive labor markets; firms pay the same wages for the same level of 

effort/skill. Wages differ across firms to the degree that worker effort/skill differs across 

firms. 

Uniform Workers and Firms 

We begin the exposition by presenting our model with uniform workers and firms to 

establish some basic results. Let there be only one type of labor, 𝜃𝑖 ≡ 𝜃 for all i with 

otherwise identical firms. We introduce heterogeneity in the next section. 

 

10 In a multiperiod model, workers may invest time and effort in learning new skills in one period that are used 
in subsequent periods. 
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Equilibrium 

There is a fixed amount of inelastically supplied labor and capital in the aggregate 

economy distributed across firms. With uniform labor and firms, firms receive proportional 

allocations of labor and capital, 𝐿 and 𝐾 in equilibrium. Taking output price as numeraire, 

profits per firm are 

𝜋(𝑞𝐼+1, … , 𝑞𝑁 , 𝑘1, … 𝑘𝐼 , 𝑙𝐼+1, … , 𝑙𝑁; 𝐼)

=  𝐴(𝐼)𝐾𝛼𝐿1−𝛼 ∏ 𝑞𝑖

𝑁

𝑖=𝐼+1

− ∑ 𝑟𝑘𝑖

𝐼

𝑖=1

− ∑ 𝑤(𝑞𝑖)𝑙𝑖

𝑁

𝑖=𝐼+1

,       

where r is the user cost of capital and w is the wage. By the symmetry of the problem, it is 

straightforward to show that 𝑞𝑖 = 𝑞𝑗 , 𝑘𝑖 = 𝑘𝑗 , and 𝑙𝑖 = 𝑙𝑗 in the appropriate range in 

equilibrium. The first order profit maximizing conditions for the three control variables then 

are 

𝑌

𝑞𝑖
− 𝜃ℎ′𝑙𝑖 =

𝑌

𝑁𝑙𝑖
− 𝑤 =

𝑌

𝑁𝑘𝑖
− 𝑟 = 0. (4) 

A useful result can be obtained by taking the implicit derivative from the first order 

maximizing condition for 𝑞𝑖 (keeping the quality of other tasks fixed),  

𝑑𝑞𝑖

𝑑𝐴
=

𝑁𝑤

𝜃𝐴𝑞𝑖ℎ′′(𝑞𝑖)
> 0. (5) 

Thus, increases in productivity will increase the equilibrium quality of output. When 

potential output increases, firms increase incentive pay, workers exert greater effort/skill, 

and total output increases more than potential output. In other words, an increase in 

potential output increases the returns to skill/effort. 

Remainder Effect 

Now consider what happens when the frontier of automated tasks increases from 𝐼 − 1 to 𝐼 

for all firms. Let us assume that the adoption costs of the new technology are negligible so 

that all firms adopt. Productivity, A, increases and, by implication of the lemma above, this 

increase should boost labor quality. Aggregate quality also increases because the machine 

produces with greater quality on task I, that is, 1 > 𝑓(𝑒𝐼). Combined, the effect of 

automation on total output per worker is 
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∆ ln
𝑌

𝐿
= ∆ ln 𝐴 + ∆ ln 𝑄 + 𝛼∆ ln

𝐾

𝐿
 

In this setting, capital and labor will be allocated proportionately across production units in 

equilibrium, so the last term drops out. Then,  

∆ ln
𝑌

𝐿
≈ ∆ ln 𝐴 + (𝑁 − 𝐼)∆ ln 𝐴 ∙

𝑑𝑞

𝑑𝐴
∙

𝐴

𝑞
 − ln 𝑓(𝑒𝐼) . (6) 

The second term represents the remainder effect. Automation boosts the returns to quality, 

increasing equilibrium labor quality. Output increases not only because automation reduces 

the labor cost of production but also because it increases labor quality. The third term is 

positive (since 𝑓 < 1, − ln 𝑓 > 0) and captures the effect of improved quality in the newly 

automated task. 

There is a corresponding change in the wage. Using the first order conditions and 

𝐿 = (𝑁 − 𝐼)𝑙𝑖, the equilibrium wage is 

𝑤 =
𝑁 − 𝐼

𝑁
∙

𝑌

𝐿
.  

Following Acemoglu and Restrepo and using (6), 

∆ ln 𝑤 ≈
𝑑 ln(𝑁 − 𝐼)

𝑑 𝐼
+ ∆ ln

𝑌

𝐿
                                                               (7) 

≈ −
1

𝑁 − 𝐼
 + ∆ ln 𝐴 + (𝑁 − 𝐼)∆ ln 𝐴 ∙

𝑑𝑞

𝑑𝐴
∙

𝐴

𝑞
− ln 𝑓(𝑒𝐼) 

Acemoglu and Restrepo call the first term the “displacement effect” The second term is an 

efficiency effect (Acemoglu and Restrepo call it the “productivity effect”). The third term 

represents the remainder effect and the fourth captures the quality improvement effect. The 

remainder effect multiplies the base productivity effect, making a positive contribution to 

wages. Also, the fourth term implies further possible wage increases. In a more general 

model, this term could possibly be negative—that is, firms might accept inferior quality 

machines if they deliver a large enough efficiency gain. The sign and magnitude of this term 

is an empirical matter. However, the addition of the term highlights an important aspect of 

automation: firms may choose to automate not so much to reduce costs as to provide better 

quality output. To the extent this is true, the effect on wages will tend to be positive. 

Generally, (7) provides reasons beyond Acemoglu and Restrepo why wages might increase. 

To keep things simple, we have used single continuous variables for product and 

labor quality and have kept the number of products and tasks fixed. In a more general 
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setting, both new tasks and new products might be natural outcomes of a growing demand 

for greater quality. For example, as the quality of a task becomes more and more valuable 

with ongoing automation, firms might subdivide that task into two or more new tasks 

allowing workers to develop more specialized skills. Something like that appears to have 

happened during the 19th century (Atack, Margo, and Rhode 2019). Similarly, new products 

might be a form of realizing greater product quality. 

Heterogeneity 

Now let there be two types of workers: high skill, designated “H,” and low skill, 

designated “L,” where 𝜃𝐻 < 𝜃𝐿. The aggregate supply of each type is fixed.  

In general, there are two ways that workers can be assigned to firms: assortative 

matching, where some firms hire more high skill workers and other firms hire more low skill 

workers, and cross-matching, where firms hire a mix of high and low skill workers. A 

theoretical literature identifies a condition under which assortative matching occurs in 

competitive markets (Becker 1981; Sattinger 1975; 1993; Kremer 1993; Kremer and Maskin 

1996), namely a positive cross derivative of output with respect to the qualities of different 

tasks. Our production function meets this criterion (see also Kremer 1993). In the next 

section, we consider a stylized model of sorting where firms hire all high skill workers or all 

low skill workers. 

Kremer and Maskin (1996) show that with a slightly different production function, 

firms will, instead, cross-match under some conditions, hiring both high and low skill 

workers. This occurs when productivity is more sensitive to some tasks than others. Let us 

divide tasks into two groups: tasks in the range 𝐼 < 𝑖 ≤ 𝐽 are “routine tasks” while tasks in 

the range 𝐽 < 𝑖 ≤ 𝑁 are “nonroutine tasks.” Below we consider an alternative specification 

that meets the Kremer-Maskin conditions. While real world skill assignments may involve a 

mix of matching and sorting, these models illustrate in simple form the different effects that 

automation has on inequality between firms and within firms.11  

 

11 Automation might also affect firms’ choices regarding sorting and cross-matching. Kremer and Maskin 
(1996) provide a variety of evidence that skill sorting has been increasing and workplaces are becoming more 
segregated by skill, that is, workers are more likely to work with other workers of similar skill (see also E. 
Handwerker 2015; E. W. Handwerker, Spletzer, and others 2016). Our model could be extended to address this 
possibility. 
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Sorting 

In a market with complete sorting, some firms, designated by an “H” subscript, hire 

only high skill workers while other firms hire only low skill workers, designated with an “L” 

subscript. We assume that both types have the same level of automation initially. The first 

order profit maximizing conditions (4) then hold separately for each firm type. Combining 

the first order conditions for quality and labor, for worker/firm type j, 

𝑤𝑗 =
𝑌𝑗

𝑁𝑙𝑖
=

𝜃𝑗 ∙ ℎ′(𝑞𝑗) ∙ 𝑞𝑗

𝑁
,     𝑗 = 𝐿, 𝐻. 

In the Appendix we show that in equilibrium, both 𝑞𝑗 and the term 𝜃𝑗 ∙ ℎ′(𝑞𝑗) ∙ 𝑞𝑗 are 

decreasing in 𝜃𝑗, all else equal. This means that 𝑤𝐻 > 𝑤𝐿 and the ratio of between-firm 

wages is 

𝜔 ≡
𝑤𝐻

𝑤𝐿
=

𝜃𝐻 ∙ ℎ′(𝑞𝐻) ∙ 𝑞𝐻

𝜃𝐿 ∙ ℎ′(𝑞𝐿) ∙ 𝑞𝐿
> 1. 

The between-firm wage gap corresponds directly to differences in skill/effort between the 

firm types. Furthermore, it is straightforward to show that capital intensity and productivity 

are higher in type H firms: 

𝑤𝐻

𝑤𝐿
=

𝐾𝐻

𝐿𝐻

𝐾𝐿

𝐿𝐿
⁄ =

𝑌𝐻

𝐿𝐻

𝑌𝐿

𝐿𝐿
⁄ > 1. 

To introduce automation into this setting, note that because type H firms have 

higher productivity, they also have stronger incentives to adopt new automation technology. 

The increase in output per worker from automation is 
𝑌

𝐿
∆ ln 𝐴 and so will be larger for type 

H firms. This increase will also be greater for the remainder effect term in (6). Suppose that 

there is a fixed cost per worker needed to adopt an automation technology. Then, in some 

cases, type H firms will find it profitable to automate while type L firms will not.12 Given this 

difference, let us assume that type H firms automate, and type L firms do not. Disparate 

adoption of automation technologies is, in fact, widely observed and appears in our data as 

well. 

 

12 Firms may make temporary profits from automating, yet competition will eventually dissipate these rents. 
There are other reasons some firms may adopt while other do not: different capabilities of managers and 
workers or different access to proprietary technologies. 
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With this assumption, we can calculate 𝜔 using an approach like the one used in 

equation (7). Here, however, we must account for changes in the capital to labor ratios for 

the two groups. As 𝑌 𝐿⁄  increases for H firms, capital also shifts to those firms. In the 

Appendix we account for this change in the equilibrium solution to derive an approximate 

lower bound for the change in the between-firm wage ratio: 

∆ ln 𝜔 = ∆ ln 𝑤𝐻 − ∆ ln 𝑤𝐿 ≈> −
1

𝑁 − 𝐼
+

𝑁

𝑁 − 𝐼 − 1
[∆ ln 𝐴𝐻 + ∆ ln 𝑄𝐻 +

1

𝐼
]. 

The first term represents the displacement effect. The expression in brackets captures the 

productivity and quality effects. Here the displacement effect decreases between-firm wage 

differences while the productivity and remainder effects increase between-firm wage 

differences. If the productivity and remainder effects are larger than the displacement effect, 

the between-firm wage gap increases. If, on the other hand, low wage firms tend to 

automate, contrary to most evidence, then the changes would narrow between-firm 

differences. And if both types of firms automated, the results are ambiguous. Thus, growing 

differences in labor quality explain rising between-firm pay gaps if adoption of automation 

technology is uneven and if the displacement effect is smaller than productivity and 

remainder effects.   

Cross-matching 

Kremer and Maskin (1996) show that cross-matching occurs when some tasks are 

more sensitive to quality than others. The idea is that, under some parameter values, firms 

will choose to assign high skill workers to sensitive tasks and low skill workers to tasks that 

are less sensitive.13 We can accommodate these notions into our production function by 

specifying now that  

𝑞𝑖 = {

1, 𝑖 ≤ 𝐼
1, 𝐼 < 𝑖 ≤ 𝐽

𝑓(𝑒𝑖), 𝐽 < 𝑖 ≤ 𝑁
} 

where 𝐼 < 𝐽 < 𝑁. Routine tasks in the range 𝐼 < 𝑖 ≤ 𝐽 are not sensitive to the quality of 

labor on those tasks while nonroutine tasks in the range 𝐽 < 𝑖 ≤ 𝑁 depend on the skill and 

effort of workers. With this modification to the production function, firms will prefer to hire 

 

13 Acemoglu and Restrepo (2018a; 2018b) exogenously assign high skill workers to nonroutine tasks and low 
skill workers to routine tasks. 
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high skill workers for nonroutine tasks and low skill workers for routine tasks. In 

equilibrium, the fixed stocks of low and high skill workers will be allocated proportionally to 

firms so that the ratio 𝐿𝐿/𝐿𝐻 of low skill workers to high skill workers will be the same. It is 

straightforward to show that firms will prefer to assign only high skill workers to nonroutine 

tasks and only low skill workers to routine tasks. Then first order profit maximizing 

conditions give us  

𝑤𝐻 =
𝑌

𝐿𝐻

(𝑁 − 𝐽)

𝑁
= 𝜃𝐻ℎ′(𝑞𝐻)𝑞𝐻𝑁,        𝑤𝐿 =

𝑌

𝐿𝐿

(𝐽 − 𝐼)

𝑁
 

and the within-firm wage difference ratio is 

𝜙 ≡
𝑤𝐻

𝑤𝐿
=

𝑁 − 𝐽

𝐽 − 𝐼
∙

𝐿𝐿

𝐿𝐻
. 

Note that the within firm wage difference is independent of the quality of the high skill 

workers. The relative wage within firms depends on the relative supply of workers from 

different skill groups and the relative demand for routine and nonroutine tasks. While high 

skill workers will receive higher performance pay, their total pay package is not necessarily 

greater. 

Now consider automation in this setting. In some papers, Acemoglu and Restrepo 

(2018a; 2018c) study situations where only routine tasks are automated. Then automation 

can be considered a change in the limit of automation from 𝐼 to 𝐼 + 1 as above. Then 

∆ ln 𝜙 ≈
𝑑

𝑑𝐼
(

𝑁 − 𝐽

𝐽 − 𝐼
∙

𝐿𝐿

𝐿𝐻
) =

1

𝐽 − 𝐼
> 0. 

Automation increases within-firm wage differences in this setting. However, automation is 

not necessarily restricted to routine tasks and then this type of labor displacement might 

decrease within-firm wage gaps (see Acemoglu and Restrepo 2018b).  

But the general point remains that automation influences within-firm wage gaps by 

way of the displacement effect. In our model as well as the models in the literature, labor 

displacement directly affects the relative demand for different skill groups within firms and 

aggregate changes in demand for these groups determines the relative equilibrium wages. 

Because workers from one skill group are employed at this wage across firms, the effect will 

be observed as within-firm wage differences. On the other hand, the remainder effect 

concerns firm-, task-, and technology-specific skills that are not common across different 
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firms. These affect between-firm wage differences but not differences between skill groups 

within the firm. 

This model provides three testable hypotheses: 

1. Automation should increase the demand for task- and technology-specific skills 

across multiple skill groups; 

2. This greater demand should be evident in the firm’s greater willingness to pay 

more for these groups; and, 

3. Assuming that automation differentially affects the tasks assigned to different 

skill groups, it should change the relative employment demand for different skill 

groups. 

The first two hypotheses distinguish this model from pure models of labor displacement: 

here, automation complements labor. The firm’s greater willingness to pay provides an 

explanation for greater between-firm pay gaps. Our model also differs from the skill-biased 

technical change hypothesis because the complementary effect of technology is not limited 

to specific skill groups. 

Empirical Analysis 

Data 

These three hypotheses concern different aspects of firm labor demand: the specific 

skills demanded, the firm’s willingness to pay for different skill groups, and the relative 

quantities of labor demanded for different skill groups. We measure these aspects of demand 

using help-wanted advertisements collected by Burning Glass Technologies. Burning Glass 

scrapes, deduplicates, and cleans the near universe of online job advertisements.  A previous 

analysis of the dataset showed that this it accounts for 60-70% of all job openings and 80-

90% of openings requiring a bachelor’s degree or more (Carnevale, Jayasundera, and 

Repnikov 2014). The data include the advertised salary, firm name, industry, occupation, 

required education and experience, requested skills, and geographic location of the job. Our 
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sample spans from January 2014 to June 2019.14 We aggregate the ads by firm and calendar 

quarter and use this as our unit of observation.  

Changes in labor demand should be immediately reflected in help-wanted advertising 

even though these changes might take longer to appear among the group of employed 

workers. To the extent that firms demand greater quality on task-specific skills, we should 

see increases in the specific skills requested in job ads. To the extent that greater demand 

increases the firm’s willingness to pay, we should higher pay offered for jobs with 

comparable characteristics. And to the extent that demand changes across skill groups, we 

should see shifts in the share of job ads directed to different skill groups.We measure these 

outcomes with the following variables: 

Specific skills. Burning Glass collects 16,050 different skills requested in ads as well as 

experience and education required. We group the specific requests into five mutually 

exclusive categories: social and cognitive skills as identified by Deming and Khan (2018), 

other soft skills, information technology and artificial intelligence, and other skills, mainly 

skills related to other technologies and industry knowledge (see Appendix). We use the mean 

number of requests per ad for each category and the mean experience and education 

requested as outcome measures. 

Pay offered. Some help wanted ads list a salary offered or a range of salaries. If a range is 

offered, we take the middle of the range for our salary calculations. The outcome variable is 

the log Mincer residual in a regression equation including experience, experience squared, 

education, detailed occupation, state, year, and a measure of labor market tightness. We 

follow Moscarini and Postel-Vinay (2016) in defining labor market tightness as the ratio 

between Job Openings and Labor Turnover Survey (JOLTS) statewide openings for the 

non-farm sector and the state unemployment rate.15  

 

14 While Burning Glass provides data prior to 2014, those years used different methods to collect, de-duplicate, 
and process the data. Because those differences might affect our analysis, we do not use that data. We omit job 
advertisements that are missing a firm name or salary, are in the public or university sector, are part time, or are 
internships. To identify ads belonging to the same firm, we cleaned names, removing standard business 
identifiers (“Inc.”, “Ltd”, “Co.”, etc.) and looking for typos in the most frequently used names in the dataset. 

15 Because most jobs do not list salaries, sample selection bias might affect this measure. Bessen et al. (2020) 
find that an exogenous change to salary listing does not significantly affect listed salaries, mitigating this 
concern. 
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Relative employment. To measure changes in the relative hiring of skill groups, we use the 

share of job ads for each group. We divide occupations into two sets of skill groups defined 

by characteristics identified in O*NET, version 17.0. First, we identify whether a bachelor’s 

degree or higher is required for most jobs in that occupation. Second, we identify 

occupations as routine cognitive, routine manual, nonroutine cognitive, and nonroutine 

manual using the indexes for these characteristics developed by Acemoglu and Autor (2011); 

an occupation is assigned to the job characteristic skill group if its index ranks in the top 

third.16 

Finally, note that we exclude information technology jobs (SOC 15) from our skill 

and pay measures to avoid confounding effects. 

Implementation 

We seek to test the model predictions regarding the adoption of large proprietary 

information systems. Much of the literature on technology and inequality measures 

technology as predicted “exposure” to automation, or industry-level investment levels, or 

proxies such as the share of workers in routine-intensive jobs. To capture impacts on 

between-firm differences, we thought it important to use firm-level measures of actual 

technology adoption. These eliminate many potentially confounding correlates.  

We measure investment in this technology from the job ad data as the share of jobs 

going to software developer occupations.17 This captures investment in firms’ own-

developed software and it is correlated with contracted software and other IT measures 

(Tambe and Hitt 2012; Bessen 2020 fn. 12).  

To analyze adoption, we identify “spikes” in developer hiring as events where the 

share of software developers rose by one percent or more relative to the mean share over the 

previous four quarters.18 This approach leverages the finding from the capital investment 

 

16 These groups are not mutually exclusive. 

17 Occupations in SOC 15 excluding 15-1141, 15-1142, 15-1151, and 15-1152, database, network, and computer 
administrators and support specialists. 

18 Also, to reduce noise, we eliminate spikes when the firm has fewer than 50 ads in quarter. A variety of 
robustness checks in the Appendix vary the threshold, finding little effect on results. 19% of firm-quarters are 
spikes, weighted by the number of job ads. While only about 1% of firms spike, these firms account for 77% of 
the hiring of software developers. 
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literature that when uncertain investments are indivisible and irreversible, they will occur in 

discrete episodes of lumpy investment (Haltiwanger, Cooper, and Power 1999; M. E. Doms 

and Dunne 1998). We find that investments in own-developed software are also lumpy and 

persistent (see Appendix Figures A1 and A2), so we use these discrete events in difference-

in-differences (DID) regressions and event studies. It is possible that we fail to identify some 

lumpy investments and incorrectly identify others. For example, firms rely on outside 

contractors to implement new systems rather than hiring their own developers. To the 

extent misidentification occurs, our results will be understated.  

Do these spike events represent automation? We note generally that most 

information technology applications involve some degree of automation—they manage 

information that was formerly managed by humans. This is strictly true for applications that 

automate business processes such as enterprise resource planning, customer relationship 

management, and electronic data interchange. In fact, the use of these systems is correlated 

with bookkeeping measures of automation expenditures (Bessen et al. 2022 Section 2.3). We 

flag events that specifically include hiring of workers with skills related to these automation 

applications and find that 81% of our spike event do.19 Similarly, 31% of the spikes involve 

firms requesting artificial intelligence skills. Thus our spikes predominately involve 

applications that automate tasks. 

To avoid problems of heterogeneity in our two-way fixed effects regressions, we 

construct balanced panels around each possible spike quarter and run stacked regressions 

(Cengiz et al. 2019, Appendix D). Let 𝑇𝑖 be the first quarter in which firm i spikes. For each 

possible spike quarter, p, designating a different cohort, we construct a balanced panel P 

consisting of observations from 𝑡 = 𝑝 − 5 to 𝑡 = 𝑝 + 5 of the treatment group, 𝑇𝑖 = 𝑝, 

and the control group, 𝑇𝑖 > 𝑝 + 5. Because firms that spike are different from firms that do 

not (see Table A1), we restrict the control group to firms that spike at some point in our 

data. This means that the treatment and control groups differ only in the timing of their 

adoption events.20 This gives us a degree of identification by removing fixed or slowly 

 

19 These are jobs requesting skills with keywords ERP, CRM, EDI, MRP, SAP, Automat*, and Robot*. 

20 Bessen et al. (2022, Appendix) provide a model for differential timing. We also duplicate our results for the 
full sample (Table A4). 
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changing confounders, such as industry and firm size, and by distinguishing major new 

investments from maintenance hiring. Our DID specification for outcome variable Y is 

𝑌𝑖𝑝𝑡 = 𝛿 ∙ 𝟏(𝑡 ≥ 𝑝) + 𝜇𝑖𝑝 + 𝜏𝑡 + 𝛽𝑋𝑖𝑡 + 𝜖𝑖𝑝𝑡 . (8) 

where 𝛿 is the average treatment effect, 𝜇𝑖𝑝 is the panel x firm fixed effect, 𝜏𝑡 is the time 

fixed effect, and 𝑋𝑖𝑡 is a vector of control variables. 

However, the model is still not fully identified because the timing of adoption is 

endogenous. While we test for and do not find significant pre-trends in our outcome 

variables, it is still possible that some other factor is correlated with adoption, occurring 

simultaneously, and which independently affects outcome variables. We identify and control 

for four such possible simultaneous confounders: 

1. Labor market tightness. Tight labor markets might induce firm to automate 

and might also raise wages and skills demanded (Modestino, Shoag, and Ballance 

2019 find tight labor markets lower skill requirements). We use the tightness 

measure described above to control for this confounder. 

2. Outsourcing of low wage jobs. Perhaps automation facilitates the outsourcing 

of low wage jobs, mechanically raising the average pay and skill requirements of 

remaining jobs. We control for the share of “outsourceable” jobs that should 

track these shifts.21 

3. Productivity and demand shocks. Perhaps firms adopt new technology in 

response to productivity or demand shocks and these shocks are also passed 

through to wages. We control for shocks using additional variables obtained 

from Compustat for the subsample of firms matched to Compustat.22 One 

variable is the growth in real sales from the quarter before the spike to a year 

 

21 The outsourceable occupations are Protective Services (SOC 33), Food and Serving (SOC 35), Building, 
Grounds, Maintenance (SOC 37), and Transportation and Moving (SOC 53) outside of outsourcing industries, 
NAICS 484, Truck Transportation, NAICS 561, Administrative and Support Services, NAICS 722, Food 
Services and Drinking Places, and NAICS 811, Repair and Maintenance. 

22 Bledi Taska of Burning Glass provided a preliminary key to match to Compustat, which we supplemented 
with our own name cleaning algorithm. Further, we used a fuzzy match with distance scores, which was then 
manually reviewed for those with close distances. The match assigns approximately 63% of the firms in 
Compustat to a job posting, with 73% of the firm-years being matched to a job posting. The firms that are 
matched to a posting account for 83% of employment total in Compustat. 
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earlier. The second control is a third order polynomial in log variable costs and 

log net capital stock (both deflated).23 

4. Management. Perhaps new managers prefer to adopt technology and also to 

hire more highly skilled workers. For the entire sample, we add the manager 

(SOC 11) share of hiring as a control. For the Compustat subsample, we add a 

binary variable to flag changes of CEO using data obtained from Execucomp. 

We find that some of these control variables have weak correlations with the 

occurrence of spikes (see Table A2), but also, they do not substantively change our results. 

This gives us a limited form of identification; it is not equivalent to conducting a randomized 

controlled trial, but our results are identified conditional on the following assumption:  

Identification assumption: there are no significant confounders that occur 
simultaneously with the adoption of these information technology systems other than 
labor market conditions, outsourcing, productivity and demand shocks, and 
management changes.  
 

As such, our results are consistent with our model and inconsistent with pure displacement 

models and with the skill-biased technical change hypothesis. Finally, our spiking results 

pertain to a select sample of firms. Below we also explore the broader validity of our model 

to the universe of help-wanted ads. 

Findings 

Firm Spikes 

Table 1 presents stacked difference-in-differences regressions (a balanced panel for 

each spiking year) where the dependent variables are the number of skills requested in the 

various categories.24 All of the skill measures show significant increases following the 

adoption event except for education. The top panel includes all jobs except for IT jobs (SOC 

15). We interpret the greater number of skills requested as evidence of greater demand for 

 

23 In the style of Olley and Pakes (1996) this polynomial is a nonparametric representation of productivity 
obtained by inverting the demand equation for variable inputs (cost of goods sold). 

24 Regressions are weighted by the number of ads and include time and cohort by firm fixed effects as well as 
controls for labor market tightness, and the shares of management and outsourceable jobs. 
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specific skills. When firms place greater value on “Teamwork” or on “Adhesives Industry 

Knowledge,” they will be more likely to specifically request these skills.  

Panel B includes the skill measures only for jobs that do not require a college 

diploma.25 These coefficients tend to be a bit smaller, but as in the larger sample, all are 

significant and positive except for education. Skill demands appear to rise for both college 

and non-college jobs, although a bit less for the latter. 

Panel C looks at the share of skills rather than the number, that is the number of skill 

requested in each category divided by the total number of skills requested. Following a spike, 

firms appear to place relatively greater demand on social and soft skills, suggesting 

organizational changes consistent with Deming (2017). However, these shifts in the 

composition of skills are small compared to the increases in demand seen in Panel A.26 The 

overall impact appears to be that firms request more of the kinds of specific skills that they 

requested before the spike, that is, they demand higher labor quality. 

Table 2 examines a broader set of skill groups, namely jobs classified as 

routine/nonroutine and cognitive/manual as per Acemoglu and Autor (2011). Panel A 

shows that all groups show significant increases in the mean number of skills requested 

except for nonroutine manual jobs. These results suggest that the technology complements 

workers in a wide range of jobs. As we would expect, firms are also willing to pay more to 

these workers seemingly complemented by software investments—the greater demand for 

skills does not just reflect the preferences of HR professionals. The dependent variable in 

Panel B is the log residual wage after controlling for job characteristics. These pay levels rise 

significantly for all groups except nonroutine manual workers; they rise notably more (9.1%) 

for nonroutine cognitive jobs. 

Table 3 tests the robustness of results to additional controls. Here the sample is 

limited to firms that are matched to Compustat. Using Compustat and Execucomp data, we 

add a control (in columns 3 and 6) for the rate of revenue growth, a flag for change of CEO, 

and a third order polynomial in log capital and log variable costs to capture productivity 

 

25 That is, fewer than half the jobs require a diploma as rated by O*NET. 

26 Expressed as percentages, the increases shown in Panel A range from 3% to 13%, much larger than the 
shifts, which are less than 1%. 
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nonparametrically. Some of these controls are statistically significant, but they do not 

meaningfully alter our estimates of the treatment effect. 

Our results are also robust to other concerns. Figures 1 and 2 shows event study 

graphs corresponding to the first column in Table 2.27 The graph shows a significant and 

persistent increase in the mean number of skills requested and log residual wage following an 

adoption event. Moreover, there is no evidence of pre-event trends in these outcome 

variables nor in the other outcome variables used in Table 1, lending support to the parallel 

trends assumption (see Appendix Table A9). Table A3 tests sensitivity to different spike 

thresholds and panel lengths; our results are robust to these changes. Table A4 shows 

regressions using an expanded sample that adds firms that never spike; the results are similar. 

Table A6 finds that excluding firms in industries that create software products (NAICS 50 

and 54) makes little difference to our results. About one third of our spiking firms use 

artificial intelligence as evidenced by requests for AI skills during the spiking quarter; 81% 

involve automation technologies. Our main results do not change significantly for these 

groups of firms (Table A7). We also conduct a placebo test to support the idea that the 

effects we observe are related to software specifically and not to other technologies or 

general hiring of higher paid workers. In Table A8, we show results from spikes in the hiring 

of engineers and technicians constructed in the same way as our software spikes. These 

personnel may tend to work on technologies that are not so much about automation. Spikes 

in the hiring of engineering related personnel do not exhibit similar treatment effects, 

suggesting that it is something specifically about information technology—perhaps 

automation—that is driving our results.  

The increased skill demands and greater pay suggest that proprietary information 

systems complement labor. Our model suggests that automation can also displace labor. 

Table 4 shows evidence of displacement. The top panel shows the share of job ads going to 

each skill group. Following technology investment, relative hiring increases for jobs requiring 

college degrees and for jobs with cognitive skills, both routine and nonroutine; relative hiring 

 

27 These show the 𝛿𝜏 coefficients from the following modification of (8):  

𝑌𝑖𝑝𝑡 = ∑ 𝛿𝜏 ∙ 𝟏(𝜏 = 𝑡)5
𝜏=−4
𝜏≠−1

+ 𝜇𝑖𝑝 + 𝜏𝑡 + 𝛽𝑋𝑖𝑡 + 𝜖𝑖𝑝𝑡. 
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decreases for non-college jobs and manual jobs. Panel B displays the log level of hiring by 

skill groups. Job ads decrease for occupations that do not require a college degree and for 

routine manual jobs. Thus, consistent with our model, there is labor displacement that 

occurs alongside increased demand for skills as seen in the prior tables.  

In theory, this displacement contributes to lower equilibrium wages for workers who 

only have routine manual skills or only a high school diploma. In practice, however, this is 

difficult to establish empirically because other factors might confound the effect of 

technology on the pay of different demographic groups (but see Acemoglu and Restrepo 

2021). For instance, in 1980 62% of the U.S. workforce had only a high school degree or 

less; today that figure is 38%. It seems highly likely that expanded access to higher education 

may have selectively induced some workers—those with lower disutilities of learning—to 

seek more education. This means that high school educated workers do not comprise a 

consistent skill group over time and declining pay for this group might reflect declining 

ability rather than technological effects. Our model provides some insight into the relative 

importance of labor displacement on wages. Because labor displacement affects market 

wages, it affects all firms equally; that is, it increases within-firm inequality. The finding that 

relatively little of the increase in inequality arises within firms—26% according to Song et al. 

(2019)—suggests that labor displacement is not the dominant driver of rising inequality. 

To summarize, given our identification assumption, the evidence on residual wages 

implies that firm investments in proprietary information technology contributes to between-

firm pay differences; the evidence on skills requested implies that these firm pay increases 

are associated with increased firm skill demands. In other words, these technology 

investments contribute to sorting of skills to higher paying firms. However, the evidence 

presented pertains only to a select sample of firms. 

Sorting  

We can also explore the relationships between firm pay levels, skills requested, and 

information technology across the entire sample of help wanted ads by looking at sorting of 

skills to high-paying firms. Studies using linked employee-employer data find that sorting 

accounts for most of the increase in wage inequality since 1980 (Card, Heining, and Kline 

2013; Barth, Davis, and Freeman 2018; Song et al. 2019; Lachowska et al. 2020). Utilizing the 

AKM method (Abowd, Kramarz, and Margolis 1999), these studies estimate firm pay fixed 
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effects controlling for observed and unobserved worker heterogeneity with worker fixed 

effects. The worker effects are positively correlated with the firm effects and this correlation 

accounts for much of the rise in inequality. Assuming that the worker effects represent 

worker skills (rather than arising from search frictions or other factors), this correlation 

represents sorting of skilled workers to high-paying firms.  

We alternatively estimate firm pay fixed effects by regressing pay offered in job ads 

controlling for job characteristics. These pay offers are obviously independent of individual 

worker heterogeneity. Using log salary as the dependent variable (or the mean of the salary 

range limits if a range is listed), we calculate firm fixed effects in a regression with controls 

for detailed occupation, industry, state, year, labor market “tightness,” skills requested, 

education required, and experience required (see Table A5). The R-squared for this 

regression is .688. The regression excludes software development occupations to avoid 

spurious correlation with our key independent variable. This gives us estimates of firm fixed 

effects for 205,306 firms that posted 85,142,065 help wanted ads, excluding ads for 

information technology occupations. These firm fixed effects are different from fixed effects 

derived from the AKM method—our fixed effects reflect differences in pay in hiring, not in 

the pay of incumbent workers.28 Nevertheless, both methods provide estimates of the firms’ 

varied willingness to pay for comparable workers. And we can measure sorting by looking at 

the correlation between these firm fixed effects and actual skill levels demanded in the job 

ads. These correlations are shown in the top panel of Table 5 which reports regressions of 

mean skill measures for each firm against firm wage fixed effects. The correlations are all 

significant, indicating sorting. The standardized coefficients represent the correlation 

coefficients. These are similar to the correlation of 0.28 between worker fixed effects and 

firm fixed effects reported by Song et al. (2019) for the period from 2007-13 using the AKM 

method.29 

 

28 There is a close correspondence between average advertised salaries and average salaries actually paid as 
observed in the Current Population Survey. Weighting the job ads to match the CPS distribution across 
occupations, the median log salary range from Burning Glass is from 10.32 to 10.69. The median log CPS 
salary for new hires is 10.48. 

29 Calculated using their figures for 
𝑐𝑜𝑣(𝑊𝐹𝐸,𝐹𝐹𝐸)

√𝑣𝑎𝑟(𝑊𝐹𝐸)𝑣𝑎𝑟(𝐹𝐹𝐸)
. 



 28 

But it turns out that firm hiring of software developers is correlated with both firm 

fixed effects and with skill measures.30 The bottom panel adds quadratic terms in the mean 

share of software developers in hiring. The correlations between worker fixed effects and 

skill measures drop sharply. The last row shows the magnitude of the decrease in the 

standardized coefficients as a portion of the correlation coefficient in Panel A. It appears 

that information technology investments can account for the majority of the sorting of skills 

to high paying firms in hiring. Given that firm investment in own-developed software has 

increased more than ten-fold since the 1980s (BEA data), this shift can explain much of the 

rise in inequality due to sorting. 

Conclusion 

This paper argues that automation can be both cost-reducing and quality-enhancing; 

it can replace labor on some tasks while it increases demand for skills on others. Major 

investments by firms in own-developed information technology are followed by greater 

demand for specific skills requested in job ads and by higher pay offers. Moreover, demand 

increases across skill groups, both for jobs requiring college and those that do not, for 

routine jobs as well as nonroutine jobs. These broad increases contribute to between-firm 

pay differences and the sorting of skilled workers to high paying firms. Analyzing the 

universe of help-wanted ads, we find that these information technology investments account 

for most of the sorting across firms. 

This pattern differs from predictions of the skill-biased technical change hypothesis 

and from theories of labor displacement. Our model provides an explanation: labor quality 

matters. While automation displaces labor on some tasks, it can also increase the returns to 

skill on the remaining non-automated tasks. Models that view automation as strictly 

substituting for labor without also complementing some workers might be incomplete and 

overly pessimistic. For instance, Acemoglu and Restrepo argue that wages will fall for “so-so 

innovations” where the productivity gain is small. But if automation raises the demand for 

 

30 See our working paper for a more complete exploration of these relationships (Bessen, Denk, and Meng 
2021) 
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quality on the remaining tasks (remainder effect), wages may rise even with modestly 

productive innovations. 

The matter is ultimately empirical, but here, too, labor quality matters for the 

analysis. Inequality is frequently measured by differences between occupational or 

educational groups. But our evidence suggests that skills and inequality change along other 

dimensions as well. In our model, labor displacement gives rise to greater within-firm 

inequality, but the evidence suggest that this is a secondary contributor to growing inequality. 

On the other hand, automation that complements labor can increase between-firm 

inequality, which appears to be more important.  

If so, this suggests a different direction for policy to combat income inequality. 

Researchers who assume that automation is purely labor displacing have proposed policies 

to redistribute income, to alter tax incentives to discourage too much automation, and to 

encourage engineers to not develop automation (Korinek and Stiglitz 2018; Benzell et al. 

2016; Acemoglu 2021; Brynjolfsson 2021). But if automation mainly complements workers, 

giving rise to greater between-firm pay differences, then policy might instead need to focus 

on reducing differences between firms in the uneven adoption of technology. Indeed, 

concerns have been raised about slower diffusion of technology (Andrews, Criscuolo, and 

Gal 2016; Akcigit and Ates 2021). While policy evaluation is beyond the scope of this paper, 

our analysis highlights that policy should be based on a richer picture of automation, one 

where technology complements labor as well as substitutes for it, where the quality of labor 

matters.  
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Figures 

 

Figure 1. Number of skills requested increases following adoption event. 
Note: This figure presents an event study equivalent to Column 1, Panel A, Table 2, 
reporting the coefficients of quarter dummies for treated firms. The regression is weighted 
by the number of ads per quarter and it includes fixed effects for quarter and cohort by firm. 
The dashed lines show the 95% confidence interval with errors clustered by cohort by firm. 
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Figure 2. Log residual pay increases following adoption event. 
Note: This figure presents an event study equivalent to Column 1, Panel B, Table 2, 
reporting the coefficients of quarter dummies for treated firms. The regression is weighted 
by the number of ads per quarter and it includes fixed effects for quarter and cohort by firm. 
The dashed lines show the 95% confidence interval with errors clustered by cohort by firm. 
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Tables 

Table 1. Technology Adoption Raises Demands for Specific Skills 

 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Skill measure: All IT+AI  Other Cognitive Social Soft Experience Education 

         

A. All jobs, number of skills       

Post treatment 0.318*** 0.041*** 0.173*** 0.017*** 0.048*** 0.038*** 0.065*** 0.017 

 (0.071) (0.008) (0.059) (0.004) (0.010) (0.010) (0.019) (0.020) 

         

Observations 102,086 102,086 102,086 102,086 102,086 102,086 97,045 96,897 

R-squared 0.873 0.821 0.868 0.888 0.872 0.868 0.871 0.894 

         

Pre-Spike Means 10.005 0.518 7.437 0.325 0.762 0.962 3.350 14.581 

B. Jobs not requiring college diplomas, number of skills     

Post treatment 0.222*** 0.031*** 0.105* 0.010** 0.040*** 0.037*** 0.041* 0.035 

 (0.070) (0.009) (0.058) (0.004) (0.010) (0.011) (0.022) (0.024) 

         

Observations 95,679 95,679 95,679 95,679 95,679 95,679 87,220 86,775 

R-squared 0.840 0.696 0.843 0.833 0.838 0.826 0.808 0.853 

         

C. All Jobs, Share of skills      

Post treatment  0.002* -0.008*** 0.001 0.002*** 0.004**   

  (0.001) (0.002) (0.000) (0.001) (0.002)   

         

Observations  102,086 102,086 102,086 102,086 102,086   

R-squared  0.854 0.847 0.853 0.857 0.755   

         

Note: these coefficients are from stacked difference-in-differences regressions where a balanced panel (t-5 to t+5) is included 

for each cohort based on spiking year. The unit of observation is firm by quarter. All firms in the sample spike at some time 

during the sample period and only observations are included that have not spiked previously. All regressions include controls 

for labor market tightness, management job share, the outsourceable job share, time and cohort x firm fixed effects and 

standard errors are clustered by cohort x firm (*** p<0.01, ** p<0.05, * p<0.1). To treat heteroscedasticity arising from 

sample variance, regressions are weighted by the number of help-wanted ads for each firm-quarter. The top panel includes 

counts of skills requested on all jobs; the bottom panel counts skills only in occupations where the majority of jobs do not 

require a college diploma. IT jobs (SOC 15) are excluded from the regressions. 
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Table 2. Adoption of Technology Raises Skill Demands and Pay Across Skill Groups 

 
 (1) (2) (3) (4) (5) (6) 

Skill group: All College not 

required 

Routine 

Cognitive 

Routine 

Manual 

Nonroutine 

Cognitive 

Nonroutine 

Manual 

       

A. Dependent variable: number of specific skills requested    

Post treatment 0.318*** 0.222*** 0.398*** 0.376*** 0.512*** 0.153 

 (0.071) (0.070) (0.087) (0.105) (0.091) (0.144) 

       

Observations 102,086 95,679 97,117 69,798 100,449 62,967 

R-squared 0.873 0.840 0.803 0.771 0.816 0.732 

 

B. Dependent variable: Log Residual Pay    

Post treatment 0.087*** 0.054** 0.067** 0.067* 0.091*** 0.023 

 (0.023) (0.024) (0.029) (0.037) (0.032) (0.031) 

       

Observations 29,437 21,073 15,617 10,820 20,092 9,345 

R-squared 0.476 0.557 0.543 0.622 0.473 0.627 

Note: these coefficients are from stacked difference-in-differences regressions where a balanced panel (t-5 to t+5) is included 

for each cohort based on spiking year. The unit of observation is firm by quarter. All firms in the sample spike at some time 

during the sample period and only observations are included that have not spiked previously. All regressions include controls 

for labor market tightness, management job share, the outsourceable job share, time and cohort x firm fixed effects and 

standard errors are clustered by cohort x firm (*** p<0.01, ** p<0.05, * p<0.1). To treat heteroscedasticity arising from 

sample variance, regressions are weighted by the number of help-wanted ads for each firm-quarter. The dependent variable in 

the top panel is the total number of skills requested per ad; the dependent variable in the bottom panel is the log residual 

salary offered after controlling for experience, experience squared, education, detailed occupation, state, year, and a measure 

of labor market tightness. IT jobs (SOC 15) are excluded from the dependent variables. 
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Table 3. Skill and Pay Treatment Effects are Robust to Controls 
 

 (1) (2) (3) (4) (5) (6) 

Dependent Variable Number of Skills Requested Log Residual Pay 

       

Post treatment 0.245** 0.214* 0.213** 0.102*** 0.102*** 0.100*** 

 (0.117) (0.112) (0.107) (0.035) (0.035) (0.036) 

Labor market tightness  0.284 0.194  -0.849 -0.802 

  (1.064) (1.097)  (0.580) (0.591) 

Management jobs  6.653*** 6.595***  -0.272 -0.271 

  (0.676) (0.650)  (0.221) (0.201) 

Outsourceable jobs  -7.210*** -7.188***  0.050 0.004 

  (1.793) (1.768)  (0.314) (0.316) 

Growth Rate of Sales   0.260*   0.071 

   (0.154)   (0.060) 

Lag CEO change   -0.966   -0.087*

   (1.032)   (0.051)

3rd order productivity 

polynomial 
      

Polynomial probability value   0.013   0.023 

       

Observations 14,008 14,008 14,008 4,706 4,706 4,706 

R-squared 0.873 0.882 0.884 0.461 0.465 0.468 

Note: these coefficients are from stacked difference-in-differences regressions where a balanced panel (t-5 to t+5) is included 

for each cohort based on spiking year. The unit of observation is firm by quarter. All firms in the sample spike at some time 

during the sample period and only observations are included that have not spiked previously. The sample in this table 

includes only firms that have been matched to Compustat in order to include additional control variables. All regressions 

include time and cohort x firm fixed effects and standard errors are clustered by cohort x firm (*** p<0.01, ** p<0.05, * 

p<0.1). To treat heteroscedasticity arising from sample variance, regressions are weighted by the number of help-wanted ads 

for each firm-quarter. The dependent variable in the first three columns is the total number of skills requested per ad; the 

dependent variable in columns 4-6 is the log residual salary offered after controlling for experience, experience squared, 

education, detailed occupation, state, year, and a measure of labor market tightness. The polynomial used in columns 3 and 6 

includes log real cost of goods sold and log real beginning-of-quarter capital. The probability value reported is for the F-test 

of the null hypothesis that polynomial coefficients are jointly zero. IT jobs (SOC 15) are excluded from the dependent 

variables. 
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Table 4: Technology Adoption and Changes in Hiring 
 
 (1) (2) (3) (4) (5) (6) 

Skill Group: College 

required 

College not 

required 

Routine 

Cognitive 

Routine 

Manual 

Nonroutine 

Cognitive 

Nonroutine 

Manual 

       

A. Share of Hiring       

Post treatment 0.017*** -0.017*** 0.007*** -0.008*** 0.021*** -0.006*** 

 (0.002) (0.002) (0.003) (0.002) (0.002) (0.002) 

       

Observations 103,547 103,547 103,594 103,594 103,594 103,594 

R-squared 0.963 0.963 0.910 0.964 0.957 0.970 

       

B. Log level of Hiring 
     

Post treatment 0.018 -0.083** 0.035 -0.107*** 0.029 -0.026 

 (0.030) (0.033) (0.032) (0.040) (0.030) (0.048) 

       

Observations 103,404 103,413 97,567 71,018 100,747 64,290 

R-squared 0.920 0.927 0.925 0.925 0.923 0.923 

Note: these coefficients are from stacked difference-in-differences regressions where a balanced panel (t-5 to t+5) is included 

for each cohort based on spiking year. The unit of observation is firm by quarter. All firms in the sample spike at some time 

during the sample period and only observations are included that have not spiked previously. All regressions include controls 

for labor market tightness, management job share, the outsourceable job share, time and cohort x firm fixed effects and 

standard errors are clustered by cohort x firm (*** p<0.01, ** p<0.05, * p<0.1). To treat heteroscedasticity arising from 

sample variance, regressions are weighted by the number of help-wanted ads for each firm-quarter. The columns designate 

different skill groups. The dependent variable in the top panel is the group’s share of job ads; the dependent variable in the 

bottom panel is the log of the number of job ads. IT jobs (SOC 15) are excluded from the dependent variables. 
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Table 5. Information Technology Accounts for Most of the Correlation  

Between Firm Fixed Effects and Skills 
 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Skill measure: All IT+AI Other Cognitive Social Soft Experience Education 

         

Panel A, simple correlation        

Firm FE 2.619*** 0.722*** 1.338*** 0.212*** 0.203*** 0.144** 1.500*** 2.912*** 

 (0.358) (0.069) (0.234) (0.024) (0.065) (0.071) (0.133) (0.353) 

         

Standardized 

coefficient 
0.176 0.246 0.125 0.207 0.111 0.067 0.284 0.203 

         

Observations 205,306 205,306 205,306 205,306 205,306 205,306 205,306 205,306 

R-squared 0.031 0.060 0.016 0.043 0.012 0.004 0.081 0.041 

 

Panel B, software controls        

Firm FE 0.613** 0.075*** 0.557** 0.074*** -0.016 -0.078 0.545*** 1.330*** 

 (0.295) (0.021) (0.222) (0.019) (0.059) (0.064) (0.100) (0.323) 

         

Standardized 

coefficient 
0.041 0.026 0.052 0.072 -0.009 -0.036 0.103 0.093 

         

Software share 36.738*** 5.601*** 20.033*** 2.683*** 4.105*** 4.315*** 13.673*** 31.272*** 

 (1.436) (0.170) (1.084) (0.092) (0.223) (0.261) (0.446) (1.203) 

Software share2 -54.94*** -0.035 -37.63*** -4.21*** -6.26*** -6.79*** -15.34*** -49.85*** 

 (2.254) (0.296) (1.713) (0.146) (0.365) (0.428) (0.736) (1.887) 

         

Observations 205,306 205,306 205,306 205,306 205,306 205,306 205,306 205,306 

R-squared 0.255 0.760 0.125 0.278 0.192 0.143 0.454 0.202 

         

SW share of 

sorting 
77% 89% 58% 65% 108% 154% 64% 54% 

         

Note: This table regresses firm mean levels of skill counts, experience and education required against firm wage fixed effects. 

The unit of observation is the firm. Firm fixed effects are calculated by regressing log salary offered against detailed 

occupation, industry, state, year, labor market tightness, skills requested, education required, experience required, and firm 

fixed effects. IT jobs are excluded for the estimates. The regressions are weighted by the number of job ads and errors are 

robust to heteroscedasticity. The bottom panel ads controls for the share of software developers in firm hiring. The 

standardized coefficients reflect the correlations between the dependent variables and firm fixed effects. Adding controls for 

software developers substantially reduces these correlations. The bottom row displays the magnitude of that decrease as one 

minus the standardized coefficient in Panel B over the standardized coefficient in Panel A. 
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Appendix 

A. Model 

Sorting equilibrium 

We can write the first order condition for 𝑞𝑖, holding the quality of other tasks, 𝑞𝑗, 

constant as 

𝑞𝑗
𝑁−𝐼−1𝑉 − 𝜃ℎ′(𝑞𝑖)𝑙𝑖 = 0. 

Taking the implicit derivative, 

𝑑𝑞𝑖

𝑑𝜃
= −

ℎ′(𝑞𝑖)

𝜃ℎ′′(𝑞𝑖)
< 0. 

The equilibrium value of 𝑞 decreases with 𝜃. From this it follows that  

𝑑 𝜃ℎ′(𝑞𝑖)𝑞𝑖

𝑑𝜃
= ℎ′(𝑞𝑖) − 𝜃(ℎ′′(𝑞𝑖)𝑞𝑖 + ℎ′(𝑞𝑖))

𝑑𝑞𝑖

𝑑𝜃
= −

(ℎ′(𝑞𝑖))
2

ℎ′′(𝑞𝑖)
< 0. 

Since, as in the text,  𝑤𝑗 = 𝜃𝑗ℎ′(𝑞𝑖)𝑞𝑖, the fact that 𝜃𝐻 < 𝜃𝐿 implies that 𝑤𝐻 > 𝑤𝐿  in 

equilibrium. 

Change in between-firm wage ratio 

It is convenient to express output in intensive form, 

𝑦 ≡
𝑌

𝐿
= 𝐴 ∙ 𝑄 ∙ 𝑘𝛼 ,        𝑘 ≡

𝐾

𝐿
 

so that the first order profit maximizing condition for labor and capital can be written 

𝑤 = (1 − 𝛼)𝑦,        𝑘 =
𝛼

𝑟
𝑦. 

Using these, we have31 

∆ ln 𝜔 = ∆ ln(1 − 𝛼𝐻) + ∆ ln
𝑦𝐻

𝑦𝐿
≈ −

1

𝑁 − 𝐼
+ ∆ ln

𝑦𝐻

𝑦𝐿
. 

Further, 

 

31 𝛼𝐻 increases from 
𝐼−1

𝑁
 to 

𝐼

𝑁
. 
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∆ ln
𝑦𝐻

𝑦𝐿
> ∆ ln 𝐴𝐻 + ∆ ln 𝑄𝐻 + 𝛼𝐿∆ ln

𝑘𝐻

𝑘𝐿
. 

The last term, which did not appear in the case of uniform workers and firms, captures the 

shift in capital from low type firms to high type firms as the productivity of the high type 

firms rises, raising the returns for capital per worker. The expression is an inequality because 

it ignores the increase in 𝛼 for high type firms. Also, using the first order condition for 

capital, 

∆ ln
𝑘𝐻

𝑘𝐿
= ∆ ln 𝛼𝐻 + ∆ ln

𝑦𝐻

𝑦𝐿
≈

1

𝐼
+ ∆ ln

𝑦𝐻

𝑦𝐿
. 

Substituting this into the previous expression, 

∆ ln
𝑦𝐻

𝑦𝐿
>

1

1 − 𝛼𝐿
[∆ ln 𝐴𝐻 + ∆ ln 𝑄𝐻 +

1

𝐼
] 

and 

∆ ln 𝜔 > −
1

𝑁 − 𝐼
+

1

1 − 𝛼𝐿
[∆ ln 𝐴𝐻 + ∆ ln 𝑄𝐻 +

1

𝐼
]. 
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B. Skill measures 

Burning Glass standardizes specific skills requested into 16,050 skills. For our analysis, we 

constructed 6 mutually exclusive skill categories: IT, AI, cognitive, social, other soft skills, 

and an additional “other” category. We begin with the definition of social and cognitive skills 

used by Deming and Khan (2018). We then assign IT, AI, and other soft skills using lists of 

skill terms not included in the Deming and Khan categories. This last category is the largest 

and contains many skills related to non-IT technologies and to industry knowledge. For our 

main analysis, we combine the AI and IT categories, but separate analysis indicates that 

spikes at firms that hire AI personnel perform much like firms that apparently use non-AI 

software methods (see Table A7 below). The frequencies with which ads request skills in 

each category are 

Category 

Percent of 

job ads 

Other 68.56 

IT 13.08 

Other soft 8.18 

social 6.92 

cognitive 3.18 

AI 0.08 
 

Cognitive Skills (D. Deming and Kahn 2018) 

These skills include the keywords Problem Solving, Research, Analytical, Critical Thinking, 

Math, and Statistics. 

 

Social Skills (D. Deming and Kahn 2018) 

These skills include the keywords Communication, Teamwork, Collaboration, Negotiation, 

and Presentation. 
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Other Soft Skills* Keywords (adapted from Khaouja et al. (2019) taxonomy):  

Accountability Ethic Social skills 

Active listening Flexibility Speaking 

Adaptive Goal Strategic thinking 

Argumentation Hospitality Time management 

Coaching Impartiality Trustworthy 

Commitment Influence Verbal communication 

Conceptual Initiative Writing 

Conflict management Integrity Written communication 

Coordination Interpersonal communication  

Creativity Kindness  

Curiosity Leadership  

Decision Mentoring  

Decision making Motivated  

Detail Optimism  

Diverse Passion  

Eagerness Persuasion  

Emotional intelligence Self-confidence  

Enthusiasm Self-organized   

 

* These skills also have synonyms, which were also flagged. For full list of synonyms, please refer to Table 

13 in Khaouja et al 2019. To further augment this list, the following commonly requested Burning Glass 

skills not already identified as a social skill were also flagged as soft skills: Planning, Detail-Oriented, 

Building Effective Relationships, Energetic, Positive Disposition, Listening, Team Building, Creative 

Problem Solving, Self-Motivation, Overcoming Obstacles, Multi-Tasking, People Management, Thought 

Leadership, Team Management. This list excludes skills already identified as social or cognitive skills 

above. 

 

 

Other Skills 

Skills that do not belong to one of the other five groups are designated as “other”. These 

skills tend to be industry-specific or firm specific. A majority of skills fit in this category. 

Examples include 5G Wireless, ACL Surgery, Adhesives Industry Knowledge, and APA 

Style Guide. 
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AI Skills (Following Alekseeva et al. (2020)) 

AI ChatBot Latent Semantic Analysis OpenNLP 

AI KIBIT Lexalytics Pattern Recognition 

ANTLR Lexical Acquisition Pybrain 

Apertium  Lexical Semantics  Random Forests 

Artificial Intelligence Libsvm  Recommender Systems 

Automatic Speech 

Recognition (ASR)  Machine Learning  

Semantic Driven Subtractive 

Clustering Method (SDSCM) 

Caffe Deep Learning 

Framework Machine Translation (MT)  Semi-Supervised Learning 

Chatbot Machine Vision 

Sentiment Analysis / Opinion 

Mining 

Computational Linguistics Madlib Sentiment Classification 

Computer Vision Mahout  Speech Recognition 

Decision Trees Microsoft Cognitive Toolkit 

Supervised Learning 

(Machine Learning) 

Deep Learning MLPACK (C++ library) 

Support Vector Machines 

(SVM)  

Deeplearning4j Mlpy TensorFlow 

Distinguo 

Modular Audio Recognition 

Framework (MARF) Text Mining 

Google Cloud Machine 

Learning Platform  MoSes Text to Speech (TTS)  

Gradient boosting MXNet Tokenization 

H2O (software) Natural Language Processing  Torch (Machine Learning)  

IBM Watson 

Natural Language Toolkit 

(NLTK) Unsupervised Learning 

Image Processing  ND4J (software)  Virtual Agents  

Image Recognition Nearest Neighbor Algorithm Vowpal  

IPSoft Amelia Neural Networks Wabbit 

Ithink Object Recognition Word2Vec 

Keras Object Tracking   

Latent Dirichlet Allocation OpenCV  
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IT Skills (Following Burning Glass Technologies Skill Cluster Families) 
Microsoft Development Tools Enterprise Content Management 

(ECM) 

Productivity Software 

Document Management Systems Internet of Things (IoT) File Transfer Software 

General Networking Enterprise Management Software Project Management Software 

Software Quality Assurance Database Administration Virtual Private Networks 

Artificial Intelligence Android Development Internet Standards 

Operating Systems Mobile Development Remote Desktop Software 

JavaScript and jQuery IT Automation Data Wrangling 

Distributed Computing Configuration Management Programming Principles 

Application Programming Interface (API) Anti-Malware Software Network File System (NFS) 

Systems Administration Middleware Integrated Development Environments 

(IDEs) 

Web Development Scripting Disk Imaging 

Scripting Languages Java Microsoft Office and Productivity Tools 

Cloud Solutions Database Management Systems Content Management Systems 

Cloud Computing Web Servers Firewall Software 

Software Development Tools Version Control Firmware 

Data Storage iOS Stack Graph Databases 

Virtual Machines (VM) Basic Computer Knowledge Identity Management 

Big Data Application Development Partitioning Software 

Network Security Network Protocols Video Conferencing Software 

Data Warehousing Technical Support Computer Hardware 

Enterprise Messaging Application Security Internet Services 

Cloud Storage Typesetting Software Internet Security 

XML Markup Languages Geographic Information System 

(GIS) Software 

Help Desk Support 

Extraction, Transformation, and Loading 

(ETL) 

Data Compression Management Information System (MIS) 

System Design and Implementation Assembly Languages Intelligent Maintenance Systems 

Network Configuration Test Automation Query Languages 

Data Synchronization Telecommunications Load Balancing 

Other Programming Languages Compiling Tools Location-based Software 

Data Management Enterprise Resource Planning (ERP) Video Compression Standards 

Web Content Backup Software Microsoft SQL Extensions 

SAP Web Design Advanced Microsoft Excel 

Archiving Software Rule Engines SQL Databases and Programming 

Cybersecurity Internet Protocols Device Management 

NoSQL Databases Extensible Languages Microsoft Windows 

Software Development Principles C and C++ Augmented Reality / Virtual Reality (AR / 

VR) 

IT Management Desktop and Service Management Enterprise Information Management 

Software Development Methodologies Mainframe Technologies Oracle 

Content Delivery Network (CDN) Parallel Computing Servers 

Networking Hardware Cache (computing) Data Collection 

Information Security PHP Web Wiki 

Note: There are 1,687 unique skills that Burning Glass identifies as Information Technology skills. From 

there, they sort these skills into broader categories, which are listed in the table below. Within the category 

“Microsoft Development Tools” is the Microsoft Office suite, which we omit as an IT skill. We exclude 

skills flagged as social, cognitive or AI skills. These specific skills include Communications Protocols, 

Data Communications, Global System for Mobile Communications, Joint Worldwide Intelligence 

Communications System, Machine-To-Machine (M2M) Communications, Oracle Fusion Middleware 

Collaboration Suite, and Voice Communications. 
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C. Lumpy Investment 

Figure A1. Lumpiness of Firm Investments 

 

Note: This figure plots changes in software developer share of job advertisements from the average of the 

previous 4 quarters. The line shows a normal density distribution with the same mean and standard 

deviation. The distribution is clearly leptokurtic with a peak at zero and fat, “lumpy” tails. 
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Figure A2. Software Hiring Increases Persist After Spikes 

 

Note: This figure plots an event study of the share of software hiring around hiring spikes. There appears to 

be a slight anticipation effect, a distinct spike (the threshold is .01), and sustained hiring of software 

developers at a slightly lower level after the spike. 
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Figure A3. Skill request trends over time 

 

 

Note: This figure shows raw trends in skill requests for both spiking (orange) and non-spiking (blue) firms 

over time. Spiking firms have higher levels of skill requests throughout the sample. 
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D. Descriptive Statistics and Robustness Checks 

Table A1 Summary Statistics 

 (1) (2) (3) 

Sample: Full sample Never-Spikers Spikers 

Weighted     

Management Job Share 0.126 0.120 0.139 

 (0.190) (0.219) (0.0960) 

    

Outsourceable Job Share 0.071 0.078 0.056 

 (0.183) (0.209) (0.101) 

    

Labor Market Tightness 0.795 0.837 0.700 

 (0.319) (0.364) (0.139) 

    

IT Share 0.095 0.074 0.108 

 (0.160) (0.166) (0.155) 

    

Residual Wage 0.012 -0.002 0.023 

 (0.291) (0.336) (0.250) 

    

College Required 0.433 0.416 0.471 

 (0.279) (0.303) (0.213) 

    

Routine Cognitive 0.298 0.294 0.307 

 (0.284) (0.325) (0.157) 

    

Routine Manual 0.207 0.224 0.170 

 (0.304) (0.339) (0.201) 

    

Non-Routine Cognitive 0.444 0.423 0.490 

 (0.343) (0.377) (0.243) 

    

Non-Routine Manual 0.158 0.177 0.115 

 (0.285) (0.320) (0.177) 

    

Number of Skills 8.230 7.385 10.062 

 (4.895) (5.210) (3.484) 

Unweighted    

Number of Ads/Quarter 85.380 5.980 164.780    

 (86.637) (1.028) (47.623) 

    

Total Firms 2,147,578 2,131,972 15,606 

Note: Means given with Standard Deviation in parentheses. Weighted estimates use analytical weights by 

number of job advertisements. 
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Table A2. Correlations of Software Spikes and Possibly Correlated Variables 

 Lagged Independent Variables 

 (1) (2) (3) (4) (5) 

Panel A. All Firms       

      

Log Job Ads 0.034***    0.035*** 

 (0.001)    (0.001) 

Software share  -0.011   0.036*** 

  (0.009)   (0.008) 

Outsourceable jobs   -0.042***  -0.062*** 

   (0.013)  (0.013) 

Management jobs    0.034*** 0.056*** 

    (0.011) (0.010) 

      

Observations 89,928 89,928 89,928 89,928 89,928 

R-squared 0.023 0.000 0.000 0.000 0.025 

Panel B. Compustat      

      

Labor Productivity 0.006*    0.016*** 

 (0.003)    (0.004) 

Log COGS  0.014***    

  (0.002)    

Log Capital   0.008***  0.014*** 

   (0.002)  (0.002) 

Sales Growth    0.017 0.028** 

    (0.012) (0.012) 

      

Observations 14,122 14,122 14,122 14,122 14,122 

R-squared 0.001 0.006 0.003 0.000 0.007 

Note: This table presents simple OLS regressions between a spike and lagged key variables from both 

Burning Glass and Compustat. All standard errors are clustered at the firm level. (*** p<0.01, ** p<0.05, * 

p<0.1) 
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Table A3 Sensitivity Table 

 Panel Size Spike Threshold 

 (1) (2) (3) (4) (5) (6) 

 t  4 t  5 t  6 .005 .01 .015 

A. Dependent variable: number of specific skills requested 

Post treatment 0.283*** 0.318*** 0.470*** 0.356*** 0.318*** 0.253*** 

 (0.076) (0.071) (0.087) (0.068) (0.071) (0.074) 

Labor market tightness -0.229 -0.176 -0.197 0.264 -0.176 -0.173 

 (0.263) (0.346) (0.444) (0.358) (0.346) (0.363) 

Management jobs 4.074*** 5.488*** 5.516*** 4.821*** 5.488*** 4.916*** 

 (0.329) (0.386) (0.576) (0.574) (0.386) (0.334) 

Outsourceable jobs -5.701*** -7.183*** -7.799*** -6.707*** -7.183*** -6.324*** 

 (0.951) (1.310) (1.655) (1.287) (1.310) (1.026) 

       

Observations 162,924 102,086 61,377 102,520 102,086 98,609 

R-squared 0.892 0.873 0.870 0.888 0.873 0.879 

 

B: Dependent variable: Log Residual Pay 

Post treatment 0.078*** 0.087*** 0.072*** 0.074*** 0.087*** 0.253*** 

 (0.022) (0.023) (0.024) (0.024) (0.023) (0.074) 

Labor market tightness -0.133 -0.279* -0.179 -0.326** -0.279* -0.173 

 (0.128) (0.147) (0.166) (0.130) (0.147) (0.363) 

Management jobs -0.091 0.016 0.198 0.055 0.016 4.916*** 

 (0.091) (0.101) (0.151) (0.107) (0.101) (0.334) 

Outsourceable jobs -0.098 0.026 0.270 -0.105 0.026 -6.324*** 

 (0.126) (0.129) (0.290) (0.149) (0.129) (1.026) 

       

Observations 42,387 29,437 19,395 28,724 29,437 28,924 

R-squared 0.522 0.476 0.411 0.462 0.476 0.450 

Note: This table shows how estimates change from changing the size of the balanced panel or threshold for 

defining a spike. Columns (2) and (5) correspond to estimates in Table 2 Column (1). Construction of 

panels and additional controls follow those described in Table 2. The unit of observation is firm by quarter. 

All firms in the sample spike at some time during the sample period and only observations are included that 

have not spiked previously. All regressions include time and cohort x firm fixed effects and standard errors 

are clustered by cohort x firm (*** p<0.01, ** p<0.05, * p<0.1). 
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Table A4 Results for Full Sample And Results for Sample Restricted to Later-Spiking Firms 

 (1) (2) (3) (4) 

 Number of Skills Requested Log Residual Wage 

Sample Later-spiking Full Sample Later-spiking Full Sample 

     

Post treatment 0.318*** 0.211*** 0.087*** 0.074*** 

 (0.071) (0.068) (0.023) (0.020) 

Labor market tightness -0.176 -0.105 -0.279* -0.149*** 

 (0.346) (0.115) (0.147) (0.043) 

Management jobs 5.488*** 3.249*** 0.016 -0.159*** 

 (0.386) (0.106) (0.101) (0.036) 

Outsourceable jobs -7.183*** -2.967*** 0.026 0.010 

 (1.310) (0.270) (0.129) (0.045) 

     

Observations 102,086 1,789,706 29,437 387,844 

R-squared 0.873 0.890 0.476 0.513 

Note: Our main analysis uses panels with control firms that spike subsequently (“later-spiking”). This table 

compares this sample with a sample that also includes control firms that never spike. Columns (1) and (3) 

correspond to Column (1) in Table 2, estimating stacked difference-in-differences regressions where a 

balanced panel (t-5 to t+5) is included for each cohort based on spiking year. The unit of observation is 

firm by quarter. All regressions include time and cohort x firm fixed effects and standard errors are 

clustered by cohort x firm (*** p<0.01, ** p<0.05, * p<0.1). In Columns (1) and (3) firms in the sample 

spike at some time during the sample period and only observations are included that have not spiked 

previously. In Columns (2) and (4) we remove this restriction, consequently broadening our sample size. 

The estimates are similar, but we prefer the estimates provided in the main text.  
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Table A5 Firm Fixed Effects 

 (1) 

 Log of Avg Salary 

  

Other Skill Count 0.003*** 

 (0.000) 

Cognitive Count 0.006*** 

 (0.000) 

Social Count 0.007*** 

 (0.000) 

AI Count 0.035*** 

 (0.002) 

IT Count 0.012*** 

 (0.000) 

Other Soft Count 0.005*** 

 (0.000) 

Minimum of the required experience range in years 0.098*** 

 (0.000) 

Experience Required Squared -0.005*** 

 (0.000) 

V/U Labor Market Tightness -0.001 

 (0.001) 

  

Observations 4,075,295 

R-squared 0.688 

Note: This table presents the coefficients used to estimate firm fixed effects. All regressions include 

occupation, education level, year, and state fixed effects and standard errors are heteroskedastic robust (*** 

p<0.01, ** p<0.05, * p<0.1). Observations are weighted by occupation share in the Current Population 

Survey. 
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Table A6 Non-IT Producing Firms 

 (1) (2) (3) (4) 

 Number of Skills Requested Log Residual Wage 

Sample Full Non-IT Full Non-IT 

     

Post treatment 0.318*** 0.358*** 0.087*** 0.091*** 

 (0.071) (0.078) (0.023) (0.025) 

Labor market tightness -0.176 -0.094 -0.279* -0.294* 

 (0.346) (0.363) (0.147) (0.151) 

Management jobs 5.488*** 5.900*** 0.016 -0.005 

 (0.386) (0.430) (0.101) (0.107) 

Outsourceable jobs -7.183*** -7.132*** 0.026 0.025 

 (1.310) (1.392) (0.129) (0.135) 

     

Observations 102,086 84,261 29,437 25,597 

R-squared 0.873 0.879 0.476 0.480 

Note: This table compares the outcomes from Table 2 Column (1) to the same specification excluding IT-

producing industries. We defined IT-producing industries as 2-digit NAICS codes 51 and 54. To determine 

a firm’s industry from Burning Glass, we assigned the modal 2-digit industry listed in a firm-year. Columns 

(1) and (3) correspond to Column (1) in Table 2, estimating stacked difference-in-differences regressions 

where a balanced panel (t-5 to t+5) is included for each cohort based on spiking year. The unit of 

observation is firm by quarter. All regressions include time and cohort x firm fixed effects and standard 

errors are clustered by cohort x firm (*** p<0.01, ** p<0.05, * p<0.1). 
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Table A7. Firms Using AI and Automation Behave Similarly 

 (1) (2) (3) (4) 

VARIABLES Number of 

skills requested 

Log Residual 

Wage 

Number of 

skills requested 

Log Residual 

Wage 

     

Non-AI x post treatment 0.330*** 0.074***   

 (0.089) (0.024)   

AI x post treatment 0.304*** 0.096***   

 (0.081) (0.027)   

Non-automation x post treatment   0.040 0.100*** 

   (0.086) (0.037) 

Automation x post treatment   0.360*** 0.086*** 

   (0.074) (0.023) 

Labor market tightness -0.177 -0.277* -0.174 -0.280* 

 (0.346) (0.146) (0.345) (0.147) 

Management jobs 5.492*** 0.012 5.467*** 0.017 

 (0.387) (0.102) (0.386) (0.101) 

Outsourceable jobs -7.179*** 0.026 -7.199*** 0.026 

 (1.308) (0.129) (1.306) (0.129) 

     

Observations 102,086 29,437 102,086 29,437 

R-squared 0.873 0.476 0.873 0.476 

Note: these coefficients are from stacked difference-in-differences regressions where a balanced panel (t-5 

to t+5) is included for each cohort based on spiking year. The unit of observation is firm by quarter. All 

firms in the sample spike at some time during the sample period and only observations are included that 

have not spiked previously. All regressions include time and cohort x firm fixed effects and standard errors 

are clustered by cohort x firm (*** p<0.01, ** p<0.05, * p<0.1). To treat heteroscedasticity arising from 

sample variance, regressions are weighted by the number of help-wanted ads for each firm-quarter. IT jobs 

(SOC 15) are excluded from the regressions. AI and automation are identified by keywords for skills 

requested. 
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Table A8. Placebo: Spikes of engineers and technicians do not display similar effects. 
Spikes defined for engineers (SOC 17) and technicians (SOC 19) excluding electrical 
engineers (SOC 172071) 

 (1) (2) 

VARIABLES Number of 

skills requested 

Log Residual 

Wage 

   

Post treatment 0.094 0.032 

 (0.065) (0.033) 

Labor market tightness -0.262 -0.129 

 (0.321) (0.127) 

Management jobs 5.136*** -0.245 

 (0.393) (0.163) 

Outsourceable jobs -6.039*** -0.299*** 

 (0.655) (0.100) 

   

Observations 97,526 28,920 

R-squared 0.884 0.464 

Note: these coefficients are from stacked difference-in-differences regressions where a balanced panel (t-5 

to t+5) is included for each cohort based on spiking year. The unit of observation is firm by quarter. All 

firms in the sample spike at some time during the sample period and only observations are included that 

have not spiked previously. All regressions include time and cohort x firm fixed effects and standard errors 

are clustered by cohort x firm (*** p<0.01, ** p<0.05, * p<0.1). To treat heteroscedasticity arising from 

sample variance, regressions are weighted by the number of help-wanted ads for each firm-quarter. IT jobs 

(SOC 15) are excluded from the regressions.  
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Table A9. Tests of Pre-trends 
F tests of the null hypothesis that event study coefficients are jointly zero prior to the spike, 

𝛿𝑡−2 = 𝛿𝑡−3 = 𝛿𝑡−4 = 0. 
 

Outcome variable Probability value 

Log residual wage 0.723 

Skill measures 

All 0.633 

IT+AI 0.371 

Other 0.553 

Cognitive 0.359 

Social 0.196 

Soft 0.941 

Experience 0.972 

Education 0.709 

Note: These event study regressions are weighted by the number of ads per quarter and they 
include fixed effects for quarter and cohort by firm. 
 


	The Remainder Effect: How Automation Complements Labor Quality
	Recommended Citation

	Cover Sheet- The Remainder Effect- How Automation Complements Labor Quality-combined (1)
	63515ca2-c122-4b7f-85c5-54e9d8fb671b.pdf
	The Remainder Effect:  How Automation Complements Labor Quality
	Introduction
	A historical example

	Model
	Basic Setup
	Tasks and Automation
	Quality
	Labor Quality

	Uniform Workers and Firms
	Equilibrium
	Remainder Effect

	Heterogeneity
	Sorting
	Cross-matching


	Empirical Analysis
	Data
	Implementation

	Findings
	Firm Spikes
	Sorting

	Conclusion
	References
	Figures
	Tables
	Appendix
	A. Model
	Sorting equilibrium
	Change in between-firm wage ratio

	B. Skill measures
	C. Lumpy Investment
	D. Descriptive Statistics and Robustness Checks



	The Remainder Effect
	The Remainder Effect:  How Automation Complements Labor Quality
	Introduction
	A historical example

	Model
	Basic Setup
	Tasks and Automation
	Quality
	Labor Quality

	Uniform Workers and Firms
	Equilibrium
	Remainder Effect

	Heterogeneity
	Sorting
	Cross-matching


	Empirical Analysis
	Data
	Implementation

	Findings
	Firm Spikes
	Sorting

	Conclusion
	References
	Figures
	Tables
	Appendix
	A. Model
	Sorting equilibrium
	Change in between-firm wage ratio

	B. Skill measures
	C. Lumpy Investment
	D. Descriptive Statistics and Robustness Checks



