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Abstract: Recent research finds that markups are rising, suggesting declining competition. 
But does less price competition mean less Schumpeterian “creative destruction”/industry 
dynamism? This paper reports the first recent estimates of trends in the displacement of 
industry-leading firms. Displacement hazards rose for several decades since 1970 but have 
declined sharply since 2000. Using a production function-based model to explore the role of 
investments, acquisitions, and lobbying, we find that investments by dominant firms in 
intangibles, especially software, are distinctly associated with greater persistence and reduced 
leapfrogging. Software investments by top firms soared around 2000, contributing 
substantially to the decline. Also, higher markups are associated with greater displacement 
hazards, linking rents positively with industry dynamism. While technology is often seen as 
disrupting industry leaders, it now appears to help suppress disruption. 
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Introduction 

Studies find evidence of rising firm markups and profit shares1 and of rising industry 

concentration at the national level.2 Many economists and policymakers are concerned about 

declining competition in the US and in other developed economies. Generally, declining 

competition is troubling for two very different reasons, one static and the other dynamic: 1) 

without sufficient competition, firms acquire market power allowing them to raise prices and 

lower output, creating allocative inefficiencies,3 and, 2) low competition may reflect barriers 

that block firms with innovative new technologies from entering, growing, and replacing 

firms that use older, less productive technologies; the result is a decline in industrial 

dynamism and productivity growth. Economists have suggested that declining competition is 

related to declining firm startup rates, slower labor reallocation to more productive firms, 

and declining investment (see for example Furman 2016, Crouzet and Eberly 2018). 

However, there is considerable tension between the notion of static price 

competition and Schumpeterian technological competition. While markups measure price 

competition by quantifying the deviation of prices from marginal cost, markups may be 

orthogonal to technological competition. Firms with innovative new technologies may earn 

rents, allowing them to charge higher markups. For instance, Bessen (2020) and Criscuolo et 

al. (2018) find positive links between information technology (IT) investments and markups 

or profit margins.  

 

1 De Loecker and Eeckhout, and Unger (2020), Barkai (2017), Hall (2018), Baqaee and Fahri (2017); see Basu 
(2019) and Syverson (2019) for reviews. 

2 Grullon et al. (2019), Autor et al. (2020), Gutierrez and Philippon (2017, 2019), Bessen (2020) but also see 
Rinz (2018), Hsieh and Rossi-Hansberg (2019), and Berry et al. (2019). 

3 Including, possibly, monopsony power in labor markets. 
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A complete understanding of competition requires additional metrics. This paper 

measures Schumpeterian competition, explores how it has changed over recent decades, and 

identifies what appear to be the main barriers to Schumpeterian competition. We also look at 

the relationship between Schumpeterian competition and other measures of competition, 

specifically markups and industry concentration. 

We use two main measures of Schumpeterian “creative destruction”: 1) the annual 

displacement hazard that a firm ranked top four by sales in its industry falls out of the top 

four, and, 2) the annual hazard that a firm ranked fifth through eighth leapfrogs into the top 

four. We model these probabilities using a simple extension of a standard production 

function. We assume that firms optimize variable inputs so that each firm’s revenues are a 

reduced-form function of the firm’s idiosyncratic productivity, the firm’s capital, and—

because of strategic interaction—capital stocks of rival firms. Then, under some simple 

assumptions, displacement and leapfrogging probabilities can be expressed as functions of 

firm productivity and firm investments, including those of rivals. This allows us to use 

regression analysis to explore the extent to which different kinds of capital affect the hazard 

rates and can account for the observed trends. We consider a variety of capital stocks 

including physical capital, intangibles, R&D, patents, organizational capital, different types of 

software, advertising and marketing, lobbying, and acquisitions. 

Our first finding is that displacement and leapfrogging hazards exhibit a sharp break 

in trend: after rising robustly for many decades, they fell sharply starting around the year 

2000. To fix ideas, it is helpful to preview a result developed more completely below. Figure 

1 shows several annual measures of Schumpeterian turnover along with the best-fit linear 

trends with a single break, where the break years are determined by Wald supremum tests. 

Panels A, C, and D show displacement hazards; panel B shows a leapfrogging hazard. Below 
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we discuss the details of these measures and also a number of alternative metrics. The 

picture that emerges is this: turnover of market leaders rose substantially from 1970 through 

the 1990s, but around 2000 the turnover rates began dropping. The change was sharp and 

substantial and across most sectors, suggesting a major shift in the nature of Schumpeterian 

competition.  

Second, we explore the roles of different capital stocks in accounting for these shifts. 

We find that rising investments in intangibles generally and in software in particular can 

account for most of the drop in displacement and leapfrogging hazards since 2000. 

Intangible and software investments by top firms appear to impose a negative externality on 

second-tier firms, reducing their leapfrogging probabilities. Dominant firms increased their 

investment in software by an order of magnitude around 2000. Even relative to second-tier 

firms ranked 5-8, the top four firms more than doubled their software stocks. Moreover, 

using Census microdata and BEA industry data, it appears that this relationship is largely 

driven by own account (self-developed) software, which is substantially dominated by large 

firms. An instrumental variable analysis provides some support for the idea that the impact 

of own-account software on displacement hazards may be causal. We discuss why software 

might be playing this role. 

We find little to support the view that declining competition has resulted from lax 

antitrust merger enforcement. Mergers and acquisitions by top firms do not significantly 

reduce displacement and acquisitions by top firms have been declining. Nor does lobbying 

appear to have much influence on the persistence of dominant firms. 

Finally, we look at the correlations between displacement hazards and industry 

markups and concentration. We find that industries with higher markups actually have 
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higher rates of displacement, implying that markups are not a reliable indicator of industry 

dynamism. Displacement hazards are negatively associated with industry concentration. 

This analysis provides a richer picture of the nature of competition, including 

different kinds of competition. And it highlights the possibility that software technology is 

playing a new and different economic role recently. This paper makes three major 

contributions. First, we report changes in the displacement hazard for top firms ranked by 

sales in industries over time, for the first time in the literature, finding a sharp reversal of 

trend around 2000.4 Second, we develop a model that includes strategic interaction and, 

using firm level data, we obtain estimates of the link between investments made by dominant 

firms and their risk of being leapfrogged, including the negative externalities these 

investments exert on other firms. Third, we explore the associations between displacement 

hazards of market leaders, their markups, and industry concentration.  

Literature 

Joseph Schumpeter (1942, p. 84) held that what matters in “capitalist reality” is 

innovation, both technological and organizational. Innovative firms can command a decisive 

cost or quality advantage that allows them to grow and to displace existing firms in a 

“perennial gale of creative destruction.” In dynamic industries, innovative firms will enter 

new markets and they will grow until they displace firms using inferior technologies or 

 

4 Autor et al. (2020, Figure A14), in a subsidiary analysis, report changes in the persistence of the top 500 firms 
in Compustat. McKinsey consultants have tabulated a “topple rate” for firms finding a rise up to 2002 
(Viguerie and Thompson 2005). Covarrubius et al. (2019) look at displacement of top firms ranked by profits 
or market value. While they find a similar drop in displacement hazards, their measures are noisier and less 
indicative of market dominance. For instance, Amazon long had a low profit ranking because it reinvested at a 
high level. In any case, we find that sales-based measures are more precise and show a larger and sharper break 
in trend. 
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business models. Substantial empirical evidence supports the proposition that greater 

contestability of sales encourages firms to improve efficiency and invest in R&D (Shapiro 

2012, but see also Gilbert 2006). Many economists see industrial dynamism as highly 

important for long term productivity growth—perhaps more important than static 

deadweight losses arising from insufficient price competition.  

Hence, it might be helpful to obtain direct measures of “creative destruction” and 

see how they have changed over time. There is a literature on the persistence of dominant 

firms that seeks to establish the degree of persistence of industry leadership and to identify 

correlated industry characteristics (Caves 1998; Davies and Geroski 1997; Doi 2001; Franko 

2003; Geroski and Toker 1996; Honjo et al. 2018; Kato and Honjo 2006, 2009; Sutton 2007). 

However, while this literature has looked at levels of displacement hazards it has not looked 

at time trends, as we do. Furthermore, while the literature explores correlated industry 

characteristics, we explore a range of firm level investments that might affect displacement 

hazards, including possible strategic interaction.  

The displacement of market leaders is, of course, not the only measure of industrial 

dynamism. Some papers have studied changes in firm entry rates (Hathaway and Litan 

2014a,b; Guzman and Stern 2016; Gutierrez and Philippon 2019) and others have studied 

the growth rates of productive firms (Decker et al. 2018). However, the displacement of 

incumbent market leaders by innovators is the “finish line” of Schumpeterian competition, 

making displacement hazards an important dimension of industrial dynamism. 

We can gain some insight as to what might be driving the sharp change in 

displacement hazards by looking at associated firm investments. In many models of 

industrial organization, firms can make investments to bolster their market shares. For 

example, in the classic Cournot model, firms invest in capacity. In endogenous sunk cost 
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models (Sutton 1991), firms improve the perceived quality of their products through 

investments in advertising or R&D. The persistence of dominance literature identifies 

several industry-level investments associated with persistence, including R&D and 

advertising (Geroski and Toker 1996). Using firm microdata, we can better identify the role 

of specific investments as barriers to mobility. This is particularly important because firms 

dramatically increased their investments in some forms of capital since the 1990s, notably 

intangibles and software.5 

Our analysis is related to a literature on the persistence of firm profits across all firms 

within each industry (see Bennett and Gartenberg 2016 for a recent review). Beginning with 

Mueller (1977), a substantial literature looks at the persistence of profits for all firms within 

industries. A few of these studies have looked at trends in persistence of profits over time. 

Examining US firms through the 1990s, Wiggins and Ruefli (2005) and Gschwandtner 

(2012) find a decline in persistence/increase in competition; McNamara et al. (2003) find no 

significant change. Looking beyond the 1990s, there is some evidence of a reversal. Bennett 

and Gartenberg (2016) find declining persistence of return on assets until about 2000 and 

rising persistence after that plus some evidence of a link to software. Bennett (2020), 

measuring production function autocorrelation finds decreasing persistence until around 

2000, a reversal, and then a subsequent decline. 

We begin by describing the diverse data sources we use. We then present alternative 

measures of trends in displacement and leapfrogging hazards, followed by analysis of the 

 

5 Byrne, Oliner, Sichel (2013); Corrado, Hulten, Sichel (2009); BEA, “National Income and Product Accounts,” 
Table 9.4u, Software Investment and Prices. 
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associations between these hazards and firm investments. We then explore the association 

between displacement hazards, firm markups, and industry concentration and then conclude. 

Data 

Datasets 

Our main dataset consists of Compustat firms traded in US currency with positive 

sales, including firms with headquarters outside the US. Because of data limitations (see 

below), we primarily use years 1976 – 2017. To identify industries in these data, we use the 

historical NAICS assignments made by Standard & Poors, projecting backwards for years 

before NAICS coverage. Because NAICS coding changes every five years, we map these 

NAICS codes to the 2012 version for continuity. Compustat primarily includes publicly 

listed firms and reported sales include all global operations.  

A second dataset is the National Establishment Time Series (NETS), a product of 

Walls & Associates, derived from the Dun & Bradstreet Marketing Information File. NETS 

consists of establishment-level longitudinal data covering, in principle, the universe of U.S. 

business establishments, private and public. We aggregated the establishments from 1990 – 

2014, assigning firms to 8-digit SIC codes based on the primary line of business. Robustness 

checks based on coarser industry categories did not find substantially different results.  

Each of these datasets has limitations. Compustat misses most private firms, 

however, the largest firms in most industries tend to be publicly listed, so displacement rates 

of top four firms should still be reasonably accurate.6 NETS is known to over-represent very 

 

6   Tracking the 100 largest firms in the NETS database each year from 1990 – 2014, 77% of the observations 
are publicly listed. 

Electronic copy available at: https://ssrn.com/abstract=3682745



 9 

small firms, but that shortcoming should not affect our analyses on dominant firms that tend 

to be large (Barnatchez, Crane and Decker, 2017). 

We also use confidential microdata from the Annual Capital Expenditures Survey 

(ACES) of the US Census from 2002 – 2012. This survey provides data on capital spending 

for new and used structures and equipment by U.S. nonfarm businesses, most importantly, 

spending on three types of software: pre-packaged, custom (contract), and own-developed. 

These microdata aggregate sales and capital expenditures of US establishments to the firm 

level, assigning the firm to a 3 or 4-digit NAICS code based on the largest business line. 

Finally, we used industry level data from the Bureau of Economic Analysis (BEA) 

that also includes measures of software investment by type. We supplement these data with 

measures of investment, including software investment, in EU countries from EU KLEMS. 

We use these latter data in an instrumental variable analysis. 

Variables 

Our basic measure of displacement hazard is the probability that a firm that was 

ranked among the top four firms in its industry by sales last year is ranked below the top 

four this year. While we test alternative definitions below and perform additional robustness 

checks, this basic measure excludes firms that are not included in the dataset for the current 

year but includes firms that change industries. 

We use a variety of capital stocks in our analysis. All are deflated and all are 

beginning-of-year stocks, that is, they are lags of the end-of-year stocks that are typically 

reported. For tangible capital, we use net property, plant, and equipment from firm balance 

sheets. Peters and Taylor (2017) have developed measures of intangible capital based on 

three components: knowledge capital derived from R&D spending, organizational capital 
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derived from Sales, General, and Administrative expenditures, and balance sheet intangibles. 

These values are available from 1975 through 2016.7 

We also obtained data on other detailed intangible investments and computed capital 

stocks using the perpetual inventory method:  

• Data on advertising and marketing expenditures come from Compustat. 
Following Villalonga (2004), we calculate stocks using a 5% pre-sample 
growth rate and 45% depreciation rate. 

• Data on patents come from Autor et al. (forthcoming), who use a 15% 
depreciation rate to compute patent stocks and who matched the data to 
Compustat. 

• Data on lobbying expenditures since 1998 come from Center for Responsive 

Politics.8 We use a 6% pre-sample growth rate and a 25% depreciation rate. 
We matched these data to Compustat using the company name (the client 

parent entity).9 
 
We also wanted to measure investments that firms make in developing proprietary 

software for their internal use. To do this, we obtained LinkedIn resume data and identified 

1,791 job titles that pertained to software development jobs (see details in Bessen and Righi 

2019). We tabulated the number of these employees, adjusted the numbers to account for 

differences in LinkedIn coverage over time, and matched the firms to Compustat from 1990 

– 2012.10 We then constructed software stocks treating the employment of software 

 

7 Following Peters and Taylor’s advice we exclude firms with less than $5 million gross PPE in 1990 dollars, 
firms in finance or utility industries, and we trim the 1% tails in Tobin’s q. 

8 http://www.opensecrets.org/resources/create/data_doc.php accessed 2016. 

9 Of 19,359 entities (companies, unions, trade associations, other organizations), we matched 11% to 
Compustat firms; these firms accounted for 53% of all lobbying expenditures. 

10 The match covers firms that account for 68% of the employees in Compustat in 1990, rising to over 90% of 
the employees in 2012. To adjust for changes in coverage over time, we scaled the LinkedIn counts of software 
employees by the ratio of software employees to all employees in the Current Population Survey to the ratio of 
software employees to all employees in LinkedIn. 
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developers as an investment, using a 33% depreciation rate and an 8% pre-sample growth 

rate. 

We also evaluate acquisitions as a kind of investment. To the extent that acquisitions 

generate goodwill—that is, to the extent that acquirers pay more than the book value of 

assets of acquired firms—they show up as balance sheet intangibles in the Peters and Taylor 

accounting. While goodwill captures the values of acquisitions, we also wanted to count the 

number of acquisitions made by large firms because even small-value transactions might 

confer significant technological advantage to dominant firms. We obtained a list of mergers 

and acquisitions from the Thomson Reuters SDC Platinum database and matched these to 

Compustat.11 To create acquisition stocks, we accumulated the number of transactions 

assuming a 15% depreciation rate and 8% pre-sample growth rate. To check the robustness 

of this procedure, we also used simple lagged acquisition flows and obtained similar results. 

To compute firm productivity, we follow common practice (see Keller and Yeaple 

2009), imputing materials and value added for the productivity estimates as follows: materials 

is cost of goods sold plus sales, general, and administrative expense less depreciation less the 

wage bill. Where the wage bill is not reported, we impute it as firm employment times the 

industry mean wage taken from the BEA. Value added is revenues minus materials. 

Finally, we estimate firm markups using the method of De Loecker, Eeckhout, and 

Unger (2020) which is based on De Loecker and Warzynski (2012) (see Appendix). 

Summary statistics can be found in Appendix A1. 

 

11 These data primarily consist of announced transactions. Public companies are not required to announce all 
mergers and acquisitions; however, the list tends to include transactions that are materially significant or where 
the acquired company has customers or suppliers who need to be informed. In practice, the number of 
announced transactions far exceed the number of transactions reported to the FTC under the Hart-Scott-
Rodino reporting requirements. We matched CUSIPs in the SDC data to permnos in CRSP to gvkeys in 
Compustat producing over 100,000 matched transactions. 

Electronic copy available at: https://ssrn.com/abstract=3682745



 12 

Empirical Findings 

The persistence of dominance 

The literature cited above on the persistence of dominance measures persistence by 

the hazard that leading firms will lose their leadership positions. In this paper, we use large 

samples, we estimate changing trends in the hazard of changes in leadership, and we relate 

these to a variety of firm investments. 

Our baseline measure is the annual hazard that a firm that was in the top four firms 

in its primary industry (6-digit NAICS in Compustat) ranked by revenue last year is no 

longer in the top four firms this year (not counting firms that exit Compustat). This hazard is 

shown in Figure 1A.12 The line represents the best-fit linear trend with a single break where 

the break year is determined by the supremum Wald test. In this case, the estimated break 

year is 2000. Table 1, row 1, displays the resulting regression coefficients for the baseline 

trend and change in trend after the break year. That is, for break year 𝜏, we estimate the 

annual hazard over time t 

ℎ𝑡 = 𝛼 ∙ 𝑡 + 𝛽 ∙ min[0, 𝑡 − 𝜏] + 𝐶 + 𝜖𝑡 . 

 

where C is a constant. The estimated coefficients for both the trend and the change in trend 

are substantial, the change is negative, and the coefficients are significant at the 1% level. 

The remaining panels of Figure 1 and the additional rows in Table 1 explore a variety 

of alternative measures, alternative industry definitions, and alternative datasets to test the 

 

12 Note that while the number of firms listed in Compustat has declined substantially since 2000, the number of 
large firms (e.g., those with over $1 billion in sales in 2009 $) has not. The rankings of the top firms should 
therefore not be significantly affected by the decline in total firms listed. 
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robustness of this finding. The second row of Table 1 considers the displacement hazard for 

a firm in the top 2 within its industry and the third row considers the displacement hazard 

for a firm in the top 8. The fourth row measures the combined hazard of being displaced 

from the top 4 firms or of exiting the Compustat dataset (no longer publicly listed). The fifth 

row considers the hazard that a firm ranked 5-9 in the previous year enters the top 4 firms. 

All show a substantial change from a positive to negative trend around 2000. 

One concern about these measures regards the definition of the relevant industries. 

Broad national industrial categories, even at the 6-digit level, do not always reflect the 

product markets that would be used, say, in merger analysis. It seems, however, that the 

change in the persistence of dominance is robust to particular industry definitions. Row 6 

uses 4-digit NAICS; row 7 uses no industry definitions but looks instead at the persistence of 

firms within the top 100 of all firms in Compustat; row 8 uses Compustat industry segment 

data for multi-product firms. Top firms have remained more dominant even among groups 

of firms that compete only in some markets or not at all. 

Compustat does not include most private firms, although most dominant firms are 

publicly listed. Also, firm sales in Compustat are global sales. It might be informative to 

measure sales just within the United States, including private firms, to understand domestic 

persistence of dominance. Row 9 shows results for the NETS database using 8-digit SIC 

industries where firm sales are calculated as the sum of sales at US establishments. While the 

time period for the NETS data only begins in 1990, we find a similar break in trend. 

Finally, this change in trend is observed across sectors. Table A2 in the Appendix 

shows regression results for a variety of sectors in both Compustat and NETS data, all 

showing a similar pattern, although not always statistically significant and with breaks 
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occurring in different years. Furthermore, the pattern is similar if firms are weighted by real 

sales in the calculation of annual hazards (not shown, available on request). 

In summary, across a wide range of measures, the displacement of dominant firms 

rose from 1970 until the late 1990s. Then, somewhere around year 2000, this trend sharply 

reversed with substantial declines in the displacement rate. Displacement hazards have 

declined roughly half a percentage point per year since then. This change represents a 

substantial decline in Schumpeterian competition and implies a marked and rapid change in 

industrial structure. 

Investments in dominance 

A model of leapfrogging 

What might be behind this sharp decline? Some papers on the persistence of 

dominance have explored industry characteristics that are associated with the displacement 

of market leaders, including industry growth, industry concentration, and R&D intensity. 

However, only limited inferences can be drawn using industry level data because firm 

behavior may differ significantly—dominant firms may behave differently than their rivals 

and those differences might be key to understanding their persistence. For this reason, it is 

important to understand which specific investments by dominant firms are most associated 

with their persistence and also, possibly, which investments by smaller firms are most 

associated with the occurrence of leapfrogging. Such analysis can provide important clues as 

to the mechanisms underlying the recent decline of disruption. 

We conduct this inquiry in the context of an extended production function. Initially, 

consider a duopoly consisting of firm 1 and 2, where 1 has smaller revenue at time t – 1. We 
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assume a Cobb Douglas revenue production function with an additional term for rival’s 

capital. Let the log revenue of firm i at time t, designating the other firm as -i, be 

(1) 

𝑦𝑖𝑡 = 𝛼0𝑙𝑖𝑡 + 𝛽0𝑘𝑖𝑡 + 𝛾0𝑘−𝑖𝑡 + 𝜔𝑖𝑡 + 𝜈𝑖𝑡 

where l is log labor, k is log of beginning-of-year capital, 𝜔𝑖𝑡 is firm productivity, and 𝜈𝑖𝑡 is 

an error term of mean zero and independent of the right-hand side variables. The variable 

𝑘−𝑖𝑡 captures the notion that firm investments can exert an externality on other firms’ 

revenues. For example, in a classic Cournot duopoly one firm’s investment in capacity shifts 

the other firm’s demand curve. 

Allowing the firm to optimize labor in each period given capital stocks and 

productivity yields a reduced form equation 

(2) 

𝑦𝑖𝑡 = 𝛽1𝑘𝑖𝑡 + 𝛾1𝑘−𝑖𝑡 + 𝛿1𝜔𝑖𝑡 + 𝜇𝑖𝑡 

Sutton (2007) finds that the shocks to firm’s market shares are independent of each other, 

so, without significant loss of generality we can model the errors as a normal distribution, 

𝜇𝑖𝑡~𝑁(0, 𝜎𝑡).13 Then the probability of a change in market leadership at time t is 

(3) 

𝑃[𝑦−𝑖𝑡 < 𝑦𝑖𝑡] = 1 − Φ (
𝑦𝑖𝑡 − 𝑦−𝑖𝑡

√2𝜎𝑡

) = Φ (−
𝑦−𝑖𝑡 −  𝑦𝑖𝑡

√2𝜎𝑡

) 

 

13 This assumes that both firms have the same error distribution. Allowing different variances does not 
significantly alter the specification. 
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where Φ is the standard normal distribution function. Taking a linear approximation of Φ, 

and capturing differences in 𝜎 with fixed effects for year and industry j, we get a linear 

probability model,14 

(4) 

𝑃𝑖𝑡 = 𝛼𝑗 + 𝛿𝑡 + γω𝑖𝑡 + 𝛽1𝑘𝑖𝑡 + 𝛽2𝑘−𝑖𝑡 + 𝜖𝑖𝑡 . 

This equation can represent either the probability that a leader firm becomes a follower or 

the probability that a follower firm leapfrogs into leadership. When the dependent variable is 

the displacement hazard of a leading firm, we expect 𝛾, 𝛽1 < 0, 𝛽2 > 0. When the 

dependent variable is a leapfrogging probability, we expect 𝛾, 𝛽1 > 0, 𝛽2 < 0. 

Empirical implementation 

Equation (4) can be readily extended to accommodate more than two firms. To 

explore the displacement hazard of top firms, we use a sample consisting of firms ranked in 

the top four by sales the previous year. In this case, we include capital stocks, 𝑘−𝑖𝑡, for firms 

ranked 5 – 8 or an average of these. These are the firms most likely to displace the subject 

firm. To explore leapfrogging hazards, the sample consists of firm ranked 5 – 8 and we 

include capital stocks of firms ranked 1 – 4. 

Also, equation (4) can include multiple capital stocks. Our base specification includes 

tangible capital (property, plant, and equipment) and intangible capital. We also decompose 

intangible capital into a range of component stocks. 

 

14 In this specification, 𝜔−𝑖𝑡 is included in the error term, although this is not necessary. Also note that this 
specification accommodates differences in coefficients between dominant and other firms. 
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In our data the capital stocks are observed, but firm productivity is not. Obtaining 

estimates of productivity for each firm each year is important to avoid biasing the capital 

stock estimates. For example, if better managers made the firm more productive and less 

likely to be displaced and if better managers also invested relatively more in intangible 

capital, then omitting the productivity measure, will bias the coefficient for intangible capital. 

To obtain measures of productivity, we use a two-step procedure. First, we estimate 

equation (1) for the sample of all firms, obtaining firm-year productivity estimates, 𝜔̂𝑖𝑡. Then 

we regress equation (4) for the limited sample of subject firms (top four or second four), 

using our productivity estimates as a control variable. Because we are using an estimated 

variable in our second step, we bootstrap to obtain standard errors. 

We estimate equation (1) using log value added as the dependent variable and log 

labor, log tangible capital, and log intangible capital as the independent variables. We also 

experimented with different measures of 𝑘−𝑖𝑡, but these made little difference to the 

coefficients obtained.15  

To obtain estimates of productivity, 𝜔𝑖𝑡, independently of the error term, 𝜈𝑖𝑡, we use 

the Ackerberg, Caves, and Frazer (2015) control function method. Note that control 

function methods of estimating production functions—Olley and Pakes (1996), Levinsohn 

and Petrin (2003), and Ackerberg, Caves, and Frazer (2015)— are two step procedures that 

generate estimates of 𝜔𝑖𝑡 in their first stages. Using OLS or other techniques for estimating 

production functions, a rough measure of productivity might also be obtained by taking the 

residual of the estimated equation. However, that residual equals 𝜔𝑖𝑡 + 𝜈𝑖𝑡 and, since 𝜈𝑖𝑡 is 

 

15 Our base specification calculates it as the log of the sum of capital for all firms in the industry excluding the 
subject firm. While this term has a statistically significant coefficient, it made little difference in the productivity 
estimates. The correlation between productivity including it and excluding it altogether is .9974. 
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correlated with the error in our second stage regression, 𝜖𝑖𝑡, by construction, using these 

residuals will lead to biased estimates.  

To check the robustness of our estimation choice, Table A3 in the Appendix 

compares estimates of equation (4) using different productivity measures. The results differ 

little, especially across the different control function methods. 

Displacement hazard 

Table 2 shows basic estimates of (3) for the top four firms in each 6-digit NAICS 

industry in Compustat, using stocks for tangible and intangible capital and omitting the 

terms for other firms. The sample includes only firms that were in the top four last year and 

the outcome variable is 1 for those that are ranked out of the top four in the current year 

and 0 otherwise. Column 1 shows that productivity and both capital stocks are significantly 

associated with the displacement hazard. The coefficient for intangible capital is somewhat 

larger in absolute magnitude than the coefficient for tangible capital, but the difference is not 

statistically significant. To gauge the economic significance of these estimates, from 1995 to 

2017 the sample mean hazard rate declined 7.7% while the mean of log tangible capital 

increased 1.55 and the mean of log intangible capital increased 2.03. Intangible capital is 

associated with a larger contribution to declining turnover by virtue of its greater growth and 

higher coefficient.  

It is possible that the coefficient estimates might be biased for a number of reasons. 

First, independent changes in industry characteristics might affect both the dependent 

variable and firm’s decisions to invest in capital stocks. For instance, a decline in industry 

volatility might reduce displacement hazards and also provide more favorable conditions for 

firms to invest. To control for changing industry conditions, Column 2 includes separate 
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year fixed effects for each industry. With these additional controls, the coefficients are larger 

in absolute magnitude. 

Another bias might arise if firms anticipate changes in volatility in advance, investing 

or disinvesting prior to the disruption. In this case, the capital stocks might be correlated 

with the error term. Column 3 conducts an instrumental variable regression with fixed 

effects, using the five-year lags of the capital stocks as instruments. Firms are much less 

likely to anticipate changes in volatility five years in advance, so these lagged stocks should 

not be much influenced by expectations of future volatility yet they are correlated with 

subsequent capital stocks by construction.16  The coefficients are quite similar to the OLS 

estimates and the null hypothesis that the capital stocks are exogenous cannot be rejected 

(probability value of .153). 

Columns 4 and 5 repeat the regression in Column 1 over different time periods. It 

appears that after 2000 the coefficient on tangible capital fell substantially while the 

coefficient on intangible capital rose. This shift suggests that intangibles are associated with 

larger decreases in turnover after 2000, perhaps because firms received a greater payoff to 

these investments. That view is supported by the relative capital stocks of top four firms 

shown in Figure 2. Both stocks have grown substantially since the mid-1990s. But around 

2000, relative investment in intangibles grew much more rapidly, more than doubling 

intangible stocks relative to tangible capital. Both this shift in investment and the shift in 

coefficients suggests that the rise of intangibles is important in understanding the reversal in 

displacement hazards following 2000. 

 

16 The first stage regression indicates that the instrument is not weak; an F-test of the joint significance of the 
explanatory variables has a statistics of 405.6. 
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Finally, note that the decline in turnover of market leaders is not the result of 

declining volatility in markets, 𝜎𝑡. Both the variance of the residual in (1) and of productivity, 

𝜔𝑖𝑡, have been rising.17 The rising persistence of market leaders has been occurring despite a 

general increase in market turbulence. 

Externalities 

The regressions in Table 2 omit the terms in equation (3) for the capital of rival 

firms. The omitted terms might be correlated with the error term, biasing the coefficients. 

Table 3 explores interactions between the top four firms in each industry with the second 

four firms, those ranked 5 – 8. Column 1 adds the capital stocks of the second-tier firms to 

the regression in Table 2, column 1. The coefficients for the subject firm are indeed larger. 

But neither the second-tier firms’ investments in tangible capital or intangible capital appear 

to have a significant effect on the top tier firms. Also, the joint probabilities that second-tier 

firms’ investments affect the displacement hazard of the top firms (the bottom two rows of 

the table) are not significant. 

The second column of Table 3 shows the corresponding regression for the second-

tier firms. The dependent variable is now the probability that a firm that was ranked 5 – 8 

last year leapfrogs into the top four firms. Here, the investments made by the top four firms 

significantly affect the leapfrog probability, both individually and jointly. The tangible capital 

investments of the third and fourth ranked firms reduces the leapfrog probability. In effect, 

 

17 The variance of the change in 𝜔𝑖𝑡 rises from .083 up through 2000 to .117 after 2000; the variance in the 
change in the total residual rises from .092 to .124.  
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these investments increase the revenues of the third and fourth ranked firms and thus raise 

the hurdle that second-tier firms need to overcome.  

The pattern for investments made by the top four firms in intangibles, however, 

exhibits a markedly different pattern. Here, it is the largest firm’s investment that has the 

biggest coefficient. This suggests that intangibles play a different role—they don’t so much 

raise the hurdle to leapfrogging as they depress the relative revenues of second-tier firms. 

That is, to the extent that intangibles raise the hurdle that second tier firms need to 

overcome, that effect should mostly appear in the coefficients of the fourth and third ranked 

firms, the firms that are most at risk of being leapfrogged. The large coefficient for the 

biggest firm suggests that the role of intangibles may be in the negative externality these 

investments exert on smaller firms rather than their role in raising firm revenues and thus 

raising the leapfrogging hurdle. Recall that in equation (1), investments play a dual role: they 

raise the revenue of the subject firm and they also exert a negative externality on demand for 

other firms. Intangibles may play a role in “business stealing.” Given the dramatic shift 

towards intangible investment by the top four firms seen in Figure 2, these externalities may 

represent important “barriers to mobility” that appear to play a major role in the decline in 

displacement and leapfrogging.  

Decomposing intangibles 

Which specific intangibles are involved in these interactions? It is interesting to 

decompose the aggregate firm intangible stocks into components. To explore the relative 

influence of different types of intangibles, it is helpful to simplify the regression in Table 3, 

column 2. Specifically, we aggregate the intangible stocks of the top four firms and only 

include the tangible stocks of the firms ranked third and fourth the previous year since these 
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are the stocks that significantly affect leapfrogging. A likelihood ratio test does not reject 

these restrictions (probability value of .703).18 

Column 1 of Table 4 shows the components of Peters and Taylor’s (2016) intangible 

capital: a stock of R&D investments, a stock of organizational capital (derived from Sales, 

General, and Administrative expenditures), and balance sheet intangibles, which consist 

substantially of goodwill accumulated from firm mergers and acquisitions. Organizational 

capital and other intangibles are important for the subject firm’s probability of leapfrogging. 

Of the investments made by top four firms, only investments in organizational capital are 

economically and statistically significant.19  

Organizational capital includes spending on advertising and marketing, lobbying, and 

software development where software is not part of the product. Columns 2 – 4 include 

measures of specific intangible stocks including software, acquisitions, advertising and 

marketing, lobbying expenditures, and patents. Because we want to focus on organizational 

capital, columns 2 and 3 exclude industries where software is a major part of the product.20 

This restriction isolates the general effect of own-developed software on competition across 

all sectors, aside from the role that software plays as a cost of goods sold. These regressions 

cover 1991 – 2012 because of data limitations. Column 4 includes all industries, but only 

 

18 To minimize problems of firms with missing or zero stocks, we use the logs of average stocks of the top four 
firms rather than the sum of individual log stocks in Table 4. 

19 When the regression is run using just the organizational capital of the largest firm in each industry, the 
coefficient on organizational capital is highly significant, -.016 (.006). 

20 These industries are NAICS 5112, software publishers, 5181, Internet service providers and web search 
portals, 5182, Data Processing, Hosting, and Related Services, 5191 Other information services, 5415 
Computer Systems Design and Related Services, 3341 Computer and peripheral equipment manufacturing, 
3342 Communications Equipment Manufacturing, 3344 Semiconductor and Other Electronic Component 
Manufacturing, and 3345 Navigational, measuring, electromedical, and control instruments manufacturing. 
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years 1999 – 2014 when lobbying data are available. Of the detailed investments made by top 

firms, only software and patent stocks have statistically significant coefficients, both for the 

subject firm and for the investments of top-four firms.  

The importance of information technology is also seen in Figure 3. Top four firms 

dramatically increased their software investments since around 2000 compared to the other 

intangible stocks.21 This difference is seen both in the level capital stocks for the top four 

firms (top panel) and also in the stocks of top four firms compared to the second-tier firms 

ranked 5-8 (bottom panel). To estimate the combined impact of the growth in software 

capital, multiply the change in the log software capital stock in Figure 3 (about 2) times the 

coefficient of top firm software from column 3 (-.014) to get a reduction in the leapfrog 

probability of about 2.5 – 3 percent (2 x -.014). Looking at the decline in the aggregate 

leapfrog hazard in Figure 1B, the increase in software investment by top four firms accounts 

for most of it. Software spending by dominant firms might present a substantial barrier to 

mobility. 

Some researchers have suggested that a decline in competition has resulted from 

mergers and acquisitions that have been permitted by overly lax antitrust enforcement 

(Grullon et al. 2019). Acquisitions do not appear to play much role in the increased 

persistence of market-leading firms. Figure 3 shows that the stock of acquisitions by top 

firms remained flat since 2000. Figure 4 shows the mean acquisitions per year for top four 

firms. These have declined since the late 1990s, making it difficult to attribute a decline in 

competition to excessive acquisitions since then.  

 

21 The software line in the figure also excludes industries where software is a major part of the product. 
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Different types of software investment 

The software stock measure used above is built from employment flows of software 

developers. These flows represent firm investment in developing their own software. Firms 

also purchase software services (custom programming) and pre-packaged software. We can 

look at the relative roles of different types of software investment in the US using data from 

the Census ACES survey and also using industry level data from the Bureau of Economic 

Analysis (BEA). The industry level data also permit us to perform instrumental variable 

estimation.  

[ACES results are awaiting Census disclosure] 

The BEA provides a longer time series on software investments at the industry level. 

We calculate annual displacement hazards from the NETS data aggregated to BEA industry 

classifications for the US from 1990 through 2014. Since software investment is dominated 

by the largest firms in each industry,22 we use the share of software capital in total capital as 

an independent variable. We scale other capital stocks similarly. Table 5 reports regression 

results the annual displacement hazard using all software (column 1) and different types of 

software (column 2), both with controls for stocks of equipment and structures as well. All 

regressions have industry and year fixed effects, they are weighted by the number of firms in 

each industry to reduce heteroscedasticity arising from sampling variance,23 and standard 

 

22 Using CPS data from 2000-2014, 38% of software developers work at firms with more than 1000 employees. 
The ACES data show that the largest firms spend dramatically more on own-account software in proportion to 
their total investments. 

23 The number of firms per industry vary by two orders of magnitude, creating substantial differences in 
sampling variance. 
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errors are clustered by industry. Software in general and own-account software in particular 

have significant negative coefficients. 

Some scholars suggest that competition has declined in the US relative to Europe 

because of lax antitrust enforcement or corporate lobbying.24 Perhaps software investment 

endogenously responds to these exogenous changes in competition, creating a spurious 

correlation. To correct for possible endogeneity, columns 3 and 4 report an instrumental 

variable estimation. We instrument the software share (column 3) and the own-account 

software share (column 4) using the software share of capital for European countries 

obtained from the EU KLEMS database. Since European businesses likely respond to 

similar technological opportunities as do US businesses, software investment should exhibit 

similar variation across industries.25 But European software investment is plausibly 

independent of factors that might influence the displacement of leaders in US markets. The 

IV regression coefficients have the same signs, are larger in magnitude, but are less precise.26  

Thus, both at the firm and industry levels, the rate of displacement of dominant 

firms is negatively related to investments in own-account software and this relationship 

appears to be independent of US political economic factors. 

 

24 Grullon et al. (2019); Philippon (2019). 

25 Our first stage regressions are highly significant. 

26 The first stage regression indicates that the instrument is not weak with an F-test of joint significance of the 
explanatory variables of 705.1. An overidentification test for covariate balance cannot reject the null hypothesis 
that the covariates are balanced (χ2=4.386; p<0.986). 
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Discussion: Why software? 

Large firm investments in all types of intangibles have risen since 2000. But 

investment in software has risen dramatically more in proportion, software investment by 

top four firms has risen sharply even relative to large second-tier firms, and software 

investments by top firms appear to play a unique role in suppressing leapfrogging by second-

tier firms. Moreover, the reversal in trend of the displacement hazard occurred just as 

investment in software by top four firms surged starting in the late 1990s. Of course, other 

developments affected some industries around this time, such as the China Shock and the 

dotcom bubble, but both the decline in displacement hazards and the surge in software 

investment happened across all sectors, not just those directly affected by China trade or 

dotcom firms. The decline of Schumpeterian competition appears to be more than a general 

story just about the rise of intangibles. Both large and small firms in many industries now 

invest more in intangibles generally, but information technology appears to play a particular 

asymmetric role, advantaging large firms at the expense of smaller ones. It is helpful to 

speculate why this might be. 

To get a sense of why software might have a similar impact on competition across a 

wide range of industries, it is helpful to look at some examples. Many of the large IT systems 

used by dominant firms share a common purpose: they allow firms to improve the quality of 

products and services by managing complexity. Consider: 

• Retailers such as Amazon and Walmart are able to use logistics and inventory 

management systems to offer customers much greater selection and to 

respond to demand changes much more rapidly despite the larger number of 

items for sale. 

• Large manufacturers are able to design products such as airplanes and 

automobiles with many more features using expensive custom CAD/CAM 

Electronic copy available at: https://ssrn.com/abstract=3682745



 27 

systems and software components. Modern cars have over 100 computers 

and over 100 million lines of software code. 

• Using large amounts of data, online platform advertising companies like 

Google and Facebook are able to target prospective consumers with highly 

tailored ads, delivering better quality to advertisers. 

• Financial institutions use large software systems to similarly target credit 

offers, managing both marketing and risk. 

All of these systems in diverse industries allow market leaders to manage a higher degree of 

complexity than their rivals, thus delivering better quality products and services. 

Why might complex systems provide greater advantage to dominant firms? Some 

researchers, such as Bauer and Lashkari (2018) find evidence of economies of scale in the 

use of IT.27 Software has large fixed costs and low marginal cost, giving an advantage to 

those firms who use it more widely.  

However, economies of scale are nothing new. Other technologies exhibit well-

known scale economies, such as steelmaking or electric power generation. Nor is it clear why 

second-tier firms cannot also realize scale advantages from software, as they do in the steel 

and electricity industries. There is a critical difference. Steel and electricity generation derive 

size advantages because of exogenous factors related to the physics of heat generation. In 

contrast, the advantages brought by the systems in the above examples derive from their 

ability to improve quality and to thereby differentiate the firm from its rivals. The advantages 

of these large software systems derive not from absolute size but from an advantage relative 

to the size rivals’ systems. Firms endogenously choose the scale of complexity they manage 

relative to rivals.  

 

27 Aghion et al. (2019) and de Ridder (2019) provide growth models featuring IT scale economies. 

Electronic copy available at: https://ssrn.com/abstract=3682745



 28 

In other words, investments in these large software systems appear to be 

endogenous sunk costs as described by (Sutton 1991).28 Sutton argues that leading firms in 

vertically differentiated markets can sink large investments in advertising or R&D to improve 

product quality and thereby achieve a large stable market share, creating a “natural 

oligopoly.” In equilibrium, firms invest at different levels, they differ in quality and in the 

prices they charge. Effectively, the quality investments made by leading firms increase the 

revenue gap to follower firms, decreasing the likelihood of leapfrogging. Large investments 

in own-account software can also differentiate firms by quality, perhaps at a larger scale. For 

example, Ellickson (2007) shows evidence that supermarket distribution systems create a 

Sutton-type market structure. Technology that provides greater differentiation at scale 

generates industry structures very different from technologies that generate exogenous cost 

savings at scale.  

These endogenous scale economies provide a succinct explanation for the observed 

trends. The emergence of IT systems to manage highly complex environments in the 1990s 

might have created new opportunities for firms to compete via large sunk investments in 

software, leading to a growing gap between first and second-tier firms and hence declining 

displacement.  

Other factors may amplify these trends. To the extent that implementation of these 

systems depends on particularly skilled managers and/or software developers, some firms 

may have unique advantages. Bloom et al. (2012) find that firms with US managers have a 

distinct advantage at implementing IT systems. To the extent that these systems depend on 

complementary organizations and are tailored to specific organizations, some firms will have 

 

28 See also Shaked and Sutton (1982, 1983, 1987). 
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greater benefit than others and these advantages will not easily diffuse. Also, some of the 

knowledge needed to implement these systems may be blockaded from rivals by intellectual 

property restrictions or other means. Andrews et al. (2016) suggest that the diffusion of new 

knowledge has slowed (see also Akcigit and Ates 2019). This interpretation is bolstered by 

evidence that dominant firm patent stocks have a modest negative impact on leapfrogging 

(Table 4). 

Markups and Industry Concentration 

Economists sometimes speak as if there were a unitary level of competition for each 

industry. As we noted in the introduction, price competition might be different from or even 

counter to technological or Schumpeterian competition. In this section, we explore how firm 

markups and industry concentration—generally taken as measures of competition—relate to 

our measure of industry leadership displacement, a measure of Schumpeterian competition. 

We calculate firm markups using the method of De Loecker, Eeckhout, and Unger 

(2020) with Compustat data (see Appendix). Figure 5 shows a binned scatterplot of the 

mean displacement hazard for top-four firms in each industry-year plotted against the mean 

lagged markup of firms in the industry, after controlling for year fixed effects. The plot 

shows a modestly upward sloping relationship except at the tails. Table A4 on the Appendix 

reports a series of regressions along the lines of Table 2, adding the firm markup lagged one 

year. Markups have a significant positive relationship with the displacement of leader firms 

across all sectors.  

To study industry concentration, we calculate the top four firms’ share of sales in 8-

digit SIC industries using NETS data for national industries. Figure 6A shows a tight 

negative relationship between industry concentration and the displacement hazard for top 
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four firms. Figure 6B shows the displacement hazard declining with the Herfindahl-

Hirschman index until the index reaches a value of about 0.25, corresponding to the 

threshold for what the Department of Justice considers “highly concentrated.” Regressions 

of the displacement hazard against interactions of industry concentration (see Appendix 

Table A5) show a highly significant negative relationship with little difference across industry 

sectors and with an increase in magnitude after the year 2000. In these data, industry 

concentration rose modestly after 2000, corresponding to the parallel decline in displacement 

hazards.29 These correlations suggest that rising industry concentration might reflect the 

same factors driving a decline in Schumpeterian competition. This association is bolstered by 

evidence that the increase in industry concentration at the national level is substantially 

driven by the increase in proprietary software spending (Bessen 2020). And it is consistent 

with the view that growing endogenous sunk software costs might lead to both higher 

concentration and greater persistence of dominant firms (Shaked and Sutton, 1982, 1983, 

1987). On the other hand, it appears that industry concentration has been rising since well 

before 2000 (Autor et al. 2020). Also, note that falling industrial concentration at the local 

level has accompanied rising concentration at the national level.30 

Conclusion 

Using multiple measures of the turnover of dominant firms, we find evidence of a 

substantial and abrupt change in the nature of competition across most sectors of the US 

 

29 Using a balanced panel, mean unweighted four-firm industry concentration rose from 72.6% in 2990 to 
73.3% in 2014; weighted by industry sales, four-firm concentration rose from 75.2% to 79.4%. 

30 Rinz (2018), Hsieh and Rossi-Hansberg (2019). 
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economy beginning in the late 1990s. Schumpeterian competition rose substantially over 

previous decades but dropped sharply in a relatively short time since the late 1990s. 

This pattern seems quite distinct from the evolution of markups and industry 

concentration which have grown steadily since about 1980 (De Loecker, Eeckhout, and 

Unger 2020, Autor et al. 2020). Our analysis suggests that these metrics capture different 

things. In particular, markups are perhaps a better measure of static price competition than 

they are of dynamic technological competition. We find, in fact, that higher markups are 

associated with greater industrial dynamism reflected by the displacement of industry leaders.  

Furthermore, we analyze the relationship between displacement rates of dominant 

firms and a wide array of investments they make, including investments in intangibles, R&D, 

organizational capital, acquisitions, software, advertising, and lobbying expenditures. 

Contrary to a view that attributes declining competition to lax antitrust merger enforcement 

(Grullon et al. 2017), we find that acquisitions by top firms are not significantly associated 

with decreased leapfrogging and, in any case, top firms have reduced the number of 

acquisitions they make each year since 2000. Nor do we find a substantial role for corporate 

lobbying by top firms (Gutierrez and Philippon 2017).  

Instead, the evidence is most consistent with an explanation that emphasizes the role 

of proprietary software. We find that software stocks are significantly related to lower 

displacement rates across a variety of datasets and measures. Moreover, investments by large 

firms in self-developed software increased by an order of magnitude beginning in the late 

1990s. This surge can account for most of the decline in leapfrogging rates and an 

instrumental variable analysis suggests the relationship is causal. Viewing these investments 

as endogenous sunk costs (Sutton 1991) provides a parsimonious explanation for the decline 

in Schumpeterian competition. Enabled by new technology, leading firms made large 
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investments in managing complexity to improve the quality of their products and services, 

differentiating themselves from rivals and creating a “natural oligopoly.” 

Thus, it seems that technology has begun to play a new and different role in the 

economy. New technologies have been generally associated with increased disruption of 

industries and technology continues to disrupt industries and business models in general 

(newspapers, music). But now, it seems, information technology allows dominant firms to 

suppress their own “creative destruction,” decreasing disruption in this particular dimension.  

The social welfare implications might be ambiguous: while dominant firms use 

information technology to improve the quality of their products and services (more features, 

greater selection, greater targeting), these firms might use technology to differentiate their 

products excessively with an eye toward “business stealing.” Moreover, while this technology 

may deliver productivity benefits today, it is not clear that it will diffuse through the rest of 

the economy or that future innovators will face restrictions to their growth.  

The decline in displacement hazards is not a conventional antitrust problem and it 

will not likely be best addressed by simply reinvigorating conventional antitrust policy. This 

paper provides methods to measure and analyze changes in displacement hazards, providing 

tools for future research on how the persistence of dominant firms affects innovation and 

productivity growth and what that means for policy. 

 
  

Electronic copy available at: https://ssrn.com/abstract=3682745



 33 

References 

Ackerberg, Daniel A., Kevin Caves, and Garth Frazer. "Identification properties of recent 
production function estimators." Econometrica 83, no. 6 (2015): 2411-2451. 

Aghion, Philippe, Antonin Bergeaud, Timo Boppart, Peter J. Klenow, and Huiyu Li. "A 
theory of falling growth and rising rents." Federal Reserve Bank of San Francisco, 
2019. 

Akcigit, Ufuk, and Sina T. Ates. Ten facts on declining business dynamism and lessons from 
endogenous growth theory. No. w25755. National Bureau of Economic Research, 
2019. 

Andrews, Dan, Chiara Criscuolo, and Peter N. Gal. "Frontier Firms, Technology Diffusion 
and Public Policy." (2015). 

Autor, David, David Dorn, Gordon H. Hanson, Gary Pisano, and Pian Shu. "Foreign 
Competition and Domestic Innovation: Evidence from US Patents." American 
Economic Review: Insights (forthcoming). 

Autor, David, David Dorn, Lawrence F. Katz, Christina Patterson, and John Van Reenen. 
"The fall of the labor share and the rise of superstar firms." Quarterly Journal of 
Economics 135 (2020). 

Baqaee, David Rezza, and Emmanuel Farhi. Productivity and Misallocation in General 
Equilibrium. No. w24007. National Bureau of Economic Research, 2017. 

Barkai, Simcha. "Declining labor and capital shares." University of Chicago (2017). 

Barnatchez, Keith, Leland Dod Crane, and Ryan Decker. "An assessment of the national 
establishment time series (nets) database." (2017). 

Basu, Susanto. "Are Price-Cost Markups Rising in the United States? A Discussion of the 
Evidence." Journal of Economic Perspectives 33, no. 3 (2019): 3-22. 

Bauer, Arthur, and Daniel Lashkari. Information Technology and Returns to Scale. 
Technical Report, Boston College, working paper, 2018. 

Bennett, Victor Manuel. "Changes in persistence of performance over time." Strategic 
Management Journal (forthcoming coming). 

Bennett, Victor Manuel, and Claudine Madras Gartenberg. "Changes in persistence of 
performance over time." Duke I&E Research Paper 2016-41 (2016). 

Berry, Steven, Martin Gaynor, and Fiona Scott Morton. "Do Increasing Markups Matter? 
Lessons from Empirical Industrial Organization." Journal of Economic Perspectives 
33, no. 3 (2019): 44-68. 

Bessen, James E., and Cesare Righi. "Shocking Technology: What Happens When Firms 
Make Large IT Investments?." Boston Univ. School of Law, Law and Economics 
Research Paper 19-6 (2019). 

Bessen, James. "Information technology and industry concentration." Journal of Law and 
Economics (2020 forthcoming). 

Electronic copy available at: https://ssrn.com/abstract=3682745



 34 

Bloom, Nicholas, Raffaella Sadun, and John Van Reenen. "Americans do IT better: US 
multinationals and the productivity miracle." The American Economic Review 102, 
no. 1 (2012): 167-201.  

Blundell, Richard, and Stephen Bond. "GMM estimation with persistent panel data: an 
application to production functions." Econometric reviews 19, no. 3 (2000): 321-340. 

Byrne, David M., Stephen D. Oliner, and Daniel E. Sichel. "Is the information technology 
revolution over?" (2013). 

Calligaris, Sara, Chiara Criscuolo, and Luca Marcolin. "Mark-ups in the digital era." (2018). 

Caves, Richard E. "Industrial Organization and New Findings on the Turnover and." Journal 
of economic literature 36, no. 4 (1998): 1947-1982. 

Corrado, Carol, Charles Hulten, and Daniel Sichel. 2009. “Intangible Capital and U.S. 
Economic Growth.” Review of Income and Wealth 55(3): 661-85. 

Covarrubias, Matias, Germán Gutiérrez, and Thomas Philippon. "Explaining the Rising 
Concentration of US Industries: Superstars, Intangibles, Globalization or Barriers to 
Entry?." In NBER Macroeconomics Annual 2019, volume 34. University of Chicago 
Press, 2019. 

Crouzet, Nicolas, and Janice Eberly. "Intangibles, investment, and efficiency." In AEA 
Papers and Proceedings, vol. 108, pp. 426-31. 2018. 

Davies, Stephen W., and Paul A. Geroski. "Changes in concentration, turbulence, and the 
dynamics of market shares." Review of Economics and Statistics 79, no. 3 (1997): 
383-391. 

De Loecker, Jan, Jan Eeckhout, and Gabriel Unger. "The rise of market power and the 
macroeconomic implications." The Quarterly Journal of Economics (2020). 

De Loecker, Jan, and Frederic Warzynski. "Markups and firm-level export status." American 
economic review 102, no. 6 (2012): 2437-71. 

De Loecker, Jan, and Jan Eeckhout. The rise of market power and the macroeconomic 
implications. No. w23687. National Bureau of Economic Research, 2017. 

De Ridder, Maarten. "Market power and innovation in the intangible economy." (2019). 

Decker, Ryan A., John C. Haltiwanger, Ron S. Jarmin, and Javier Miranda. Changing 
business dynamism and productivity: Shocks vs. responsiveness. No. w24236. 
National Bureau of Economic Research, 2018. 

Doi, Noriyuki. "Market leadership volatility in Japanese industries." Review of Industrial 
Organization 18, no. 4 (2001): 427-444. 

Ellickson, Paul B. "Does Sutton apply to supermarkets?." The RAND Journal of Economics 
38, no. 1 (2007): 43-59. 

Franko, Lawrence G. "Corporate concentration and turnover in global industries, 1960–
2000." Competition & Change 7, no. 2-3 (2003): 163-184. 

Geroski, Paul A., and Saadet Toker. "The turnover of market leaders in UK manufacturing 
industry, 1979-86." International journal of industrial organization 14, no. 2 (1996): 
141-158. 

Electronic copy available at: https://ssrn.com/abstract=3682745



 35 

Gilbert, Richard. "Looking for Mr. Schumpeter: Where Are We in the Competition--
Innovation Debate?." Innovation policy and the economy 6 (2006): 159-215. 

Grullon, Gustavo, Yelena Larkin, and Roni Michaely. "Are US industries becoming more 
concentrated?." Review of Finance 23, no. 4 (2019): 697-743. 

Gschwandtner, Adelina. "Evolution of profit persistence in the USA: Evidence from three 
periods." The Manchester School 80, no. 2 (2012): 172-209. 

Gutierrez Gallardo, German, and Thomas Philippon. "Declining Competition and 
Investment in the US." (2017). 

Gutiérrez, Germán, and Thomas Philippon. The failure of free entry. No. w26001. National 
Bureau of Economic Research, 2019. 

Guzman, Jorge, and Scott Stern. The state of American entrepreneurship: New estimates of 
the quantity and quality of entrepreneurship for 15 US states, 1988-2014. No. 
w22095. National Bureau of Economic Research, 2016. 

Hall, Robert E. New evidence on the markup of prices over marginal costs and the role of 
mega-firms in the us economy. No. w24574. National Bureau of Economic 
Research, 2018. 

Hathaway, Ian, and Robert E. Litan. "Declining business dynamism in the United States: A 
look at states and metros." Brookings Institution 2 (2014a). 

Hathaway, Ian, and Robert E. Litan. "Declining business dynamism in the United States." 
Brookings Institution (May 2014b). Also,“Young Entrepreneurs: An Endangered 
Species. 

Honjo, Yuji, Noriyuki Doi, and Yasushi Kudo. "The Turnover of Market Leaders in 
Growing and Declining Industries: Evidence from Japan." Journal of Industry, 
Competition and Trade 18, no. 2 (2018): 121-138. 

Hsieh, Chang-Tai, and Esteban Rossi-Hansberg. The Industrial Revolution in Services. No. 
w25968. National Bureau of Economic Research, 2019. 

Kato, Masatoshi, and Yuji Honjo. "Market share instability and the dynamics of competition: 
A panel data analysis of Japanese manufacturing industries." Review of Industrial 
Organization 28, no. 2 (2006): 165-182. 

Kato, Masatoshi, and Yuji Honjo. "The persistence of market leadership: evidence from 
Japan." Industrial and Corporate Change 18, no. 6 (2009): 1107-1133. 

Keller, Wolfgang, and Stephen R. Yeaple. "Multinational enterprises, international trade, and 
productivity growth: firm-level evidence from the United States." The Review of 
Economics and Statistics 91, no. 4 (2009): 821-831. 

Levinsohn, James, and Amil Petrin. "Estimating production functions using inputs to 
control for unobservables." The Review of Economic Studies 70, no. 2 (2003): 317-
341. 

McNamara, Gerry, Paul M. Vaaler, and Cynthia Devers. "Same as it ever was: The search for 
evidence of increasing hypercompetition." Strategic Management Journal 24, no. 3 
(2003): 261-278. 

Electronic copy available at: https://ssrn.com/abstract=3682745



 36 

Olley, G. Steven, and Ariel Pakes. "The Dynamics of Productivity in the 
Telecommunications Equipment Industry." Econometrica 64, no. 6 (1996): 1263-
1297. 

Peters, Ryan H., and Lucian A. Taylor. "Intangible capital and the investment-q relation." 
Journal of Financial Economics 123, no. 2 (2017): 251-272. 

Philippon, Thomas. The Great Reversal: How America Gave Up on Free Markets. Harvard 
University Press, 2019. 

Rinz, Kevin. "Labor market concentration, earnings inequality, and earnings mobility." 
Center for Administrative Records Research and Applications Working Paper 10 
(2018). 

Schumpeter, Joseph Alois. "Capitalism, socialism, and democracy." (1942). 

Shaked, Avner, and John Sutton. "Relaxing price competition through product 
differentiation." The review of economic studies (1982): 3-13. 

Shaked, Avner, and John Sutton. "Natural oligopolies." Econometrica (1983): 1469-1483. 

Shaked, Avner, and John Sutton. "Product differentiation and industrial structure." The 
Journal of Industrial Economics (1987): 131-146. 

Shapiro, Carl. "Competition and innovation: did Arrow hit the Bull's eye?" In The rate and 
direction of inventive activity revisited, pp. 361-404. University of Chicago Press, 
2012. 

Sutton, John. "Market share dynamics and the" persistence of leadership" debate." American 
Economic Review 97, no. 1 (2007): 222-241. 

Sutton, John. Sunk costs and market structure: Price competition, advertising, and the 
evolution of concentration. MIT press, 1991. 

Syverson, Chad. "Macroeconomics and Market Power: Facts, Potential Explanations and 
Open Questions." Economic Studies at Brookings (2019). 

Viguerie, S. P., and C. Thompson. "The faster they fall." Harvard Business Review 83, no. 3 
(2005): 22. 

Villalonga, Belén. "Intangible resources, Tobin’s q, and sustainability of performance 
differences." Journal of Economic Behavior & Organization 54, no. 2 (2004): 205-
230. 

Wiggins, Robert R., and Timothy W. Ruefli. "Schumpeter's ghost: Is hypercompetition 
making the best of times shorter?." Strategic Management Journal 26, no. 10 (2005): 
887-911. 

 

  

Electronic copy available at: https://ssrn.com/abstract=3682745



 37 

Tables and Figures 

Table 1. Best-fit trends with single break for various hazard measures. 

Hazard measure 

Industry 

measure 

Break 

year Trend (𝛼) Change in trend (𝛽) 

Compustat data       

Displacement from top 

4 firms 

6-digit NAICS 

primary industry 
2000 0.0017 (0.0004)*** -0.0046 (0.0009)*** 

Displacement from top 

2 firms 

6-digit NAICS 

primary industry 
2000 0.0027 (0.0005)*** -0.0062 (0.0010)*** 

Displacement from top 

8 firms 

6-digit NAICS 

primary industry 
2000 0.0010 (0.0004)** -0.0032 (0.0007)*** 

Displacement from top 

4 firms + Exit 

6-digit NAICS 

primary industry 
2000 0.0024 (0.0004)*** -0.0061 (0.0010)*** 

Leapfrog into top 4 

firms (rank 5-9) 

6-digit NAICS 

primary industry 
2001 0.0013 (0.0002)*** -0.0029 (0.0007)*** 

Displacement from top 

4 firms 

4-digit NAICS 

primary industry 
2000 0.0022 (0.0003)*** -0.0055 (0.0008)*** 

Displacement from top 

100 firms All industries 
2003 0.0014 (0.0004)*** -0.0048 (0.0013)*** 

Displacement from top 

4 firm segments 

4-digit SIC industry 

segments 
1998 0.0012 (0.0011) -0.0047 (0.0019)** 

NETS data  
     

Displacement from top 

4 firms 

8-digit SIC 

industries 
1997 0.0057 (0.0028)* -0.0079 (0.0033)** 

              
Note: Standard errors in parentheses, * p<.1, ** p<.05, *** p<.01. Break years are estimated using the 

supremum Wald test. The trend and change in trend after the break are determined from a simple OLS 

regression of the annual hazard rates on these two terms (see text). 
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Table 2. Displacement Hazard and Tangible/Intangible Capital 
 

 1 2 3 4 5 

 Base Ind-year FE IV <=2000 >2000 

 1976-2017 1976-2017 1980-2017 1976-2000 2001-2017 

Productivity -0.019 -0.066** -0.099*** -0.102*** -0.032 

 (0.018) (0.028) (0.009) (0.031) (0.023) 

      

Net PPE -0.029*** -0.037*** -0.027*** -0.043*** -0.023*** 

 (0.003) (0.004) (0.004) (0.004) (0.005) 

      

Intangibles -0.026*** -0.033*** -0.030*** -0.030*** -0.032*** 

 (0.003) (0.003) (0.004) (0.004) (0.005) 

      

Industry FE x  x x x 

Year FE x  x x x 

Industry x year FE  x    

      

Observations 26471 26471 22159 15936 10535 

Adjusted R-squared 0.091 0.067 0.077 0.109 0.091 

Note: Bootstrapped standard errors clustered by firm in parentheses, * p<.1, ** p<.05, *** p<.01. 

Independent variables are in logs. Productivity is estimated by  the ACF method. Column 3 instruments 

capital stocks using 5-year lagged values.  
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Table 3. Hazard estimates with external interactions 

    

Hazard: 
Top 4 firm 

moves down  

Second 4 firm 

moves up 

Subject firm    

Productivity -0.006  0.090*** 

 (0.021)  (0.022) 

Net PPE -0.033***  0.039*** 

 (0.004)  (0.003) 

Intangibles -0.035***  0.032*** 

 (0.004)  (0.003) 

Tangible Capital   

Firm 5 0.004 Firm 1 -0.001 

 (0.003)  (0.004) 

Firm 6 0.001 Firm 2 -0.002 

 (0.002)  (0.004) 

Firm 7 -0.001 Firm 3 -0.011*** 

 (0.003)  (0.004) 

Firm 8 -0.002 Firm 4 -0.014*** 

 (0.002)  (0.004) 

Intangible Capital   

Firm 5 -0.001 Firm 1 -0.014*** 

 (0.002)  (0.004) 

Firm 6 0.003 Firm 2 -0.004 

 (0.003)  (0.004) 

Firm 7 0.002 Firm 3 -0.005 

 (0.003)  (0.005) 

Firm 8 0.004 Firm 4 -0.006 

 (0.003)  (0.004) 

    

Observations 14924  13765 

R-squared 0.118  0.087 

Other firms (probability values) 

Joint test of 

tangibles  
.261  .000 

Joint test of 

intangibles  
.164  .000 

Note: Bootstrapped standard errors in parentheses, clustered by firm, * p<.1, ** p<.05, *** p<.01. All 

regressions have industry and year fixed effects. Independent variables are in logs. Productivity is 

estimated using the ACF method. 
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Table 4. Decomposing Intangibles, Leapfrog hazard 
Subject firm 1 2 3 4 

Productivity 0.093*** 0.085*** 0.056*** 0.105*** 

 (0.023) (0.023) (0.017) (0.035) 

Net PPE 0.043*** 0.053*** 0.051*** 0.052***  
(0.004) (0.004) (0.004) (0.006) 

R&D 0.001                 
(0.002)                

Org. capital 0.022***                 
(0.004)                

Other intangibles 0.002*                 
(0.001)                

Software Stock  0.003 0.008   
 (0.004) (0.005)  

Acquisitions  0.009  0.012  

 (0.006)  (0.009) 

Advertising  0.006**  0.002  

 (0.003)  (0.004) 

Patents    0.012*** 

    (0.004) 

Lobbying    -0.006  

   (0.014) 

Top 4 firms (average)    

PPE, firm #3 -0.016*** -0.003 -0.001 -0.008  
(0.004) (0.006) (0.004) (0.007) 

PPE, firm #4 -0.019*** -0.012*** -0.013*** -0.018***  
(0.004) (0.004) (0.004) (0.007) 

R&D -0.003                 
(0.003)                

Org. capital -0.015***                 
(0.006)                

Other intangibles 0.001                 
(0.002)                

Software Stock  -0.014** -0.014**   

 (0.007) (0.006)  

Acquisitions  0.002  -0.003  

 (0.007)  (0.012) 

Advertising  0.003*  0.002  
 (0.002)  (0.002) 

Patents    0.009  

   (0.007) 

Lobbying    -0.012**  

   (0.006) 

Observations 12964 7706 9140 4088 

R-squared 0.086 0.118 0.106 0.133 

Note: Bootstrapped standard errors clustered by firm in parentheses, * p<.1, ** p<.05, *** p<.01. Industry 

and year fixed effects. Columns 2 and 3 exclude industries where software is a major part of the product. 
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Table 5. Displacement hazard at industry level, US  
Dependent variable: Displacement of top four firm ranked by sales in US market 
 

 (1) (2) (3) (4) 

 OLS OLS IV IV 

All software share -0.412***   -0.911***   

  (0.120)   (0.219)   

Own-account software share   -0.669**   -2.850*  
  (0.324)   (1.545) 

Prepackaged software share   -0.595   0.455  
  (0.640)   (2.404) 

Custom software share   -0.127   0.283  
  (0.272)   (0.501) 

All equipment share -0.097 -0.070 -0.235*** -0.158  
(0.076) (0.097) (0.083) (0.106) 

All structures share 0.072 0.093 0.044 0.110  
(0.079) (0.095) (0.091) (0.097) 

 
  

 
    

Observations 1,440 1,440 1,440 1,440 

R-squared 0.373 0.374     

Note: Standard errors clustered by industry in parentheses, * p<.1, ** p<.05, *** p<.01. All regressions 

have industry and year fixed effects and industries are weighted by firm counts. Independent variables are 

in logs. Software share (column 3) and own-account share (column 4) are instrumented using the log 

software share of capital for European countries. First stage regressions are highly significant. 
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Figure 1. Displacement Hazards 

 
 
Note: Break years are estimated using the supremum Wald test. The trend and change in trend after the 

break are determined from a simple OLS regression of the annual hazard rates on these two terms. 
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Figure 2. Mean difference in capital stock by type of top four firms  
 
 

 
 
  

Electronic copy available at: https://ssrn.com/abstract=3682745



 44 

Figure 3. Trends in Intangible Stocks of Top Four Firms 
A. Levels, Top four firms 

 
 

B. Difference, top four firms relative to firms ranked 5-9 

 
Note: software line excludes firms in industries where software is a major part of the product. 
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Figure 4. Mean acquisitions by top four firms
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Figure 5. Mean Industry Displacement Hazard and Markups 

 
Note: Binned scatter plot from Compustat data 1980-2014, showing mean annual 
displacement hazard for 6-digit NAICS industries after controlling for year plotted against 
mean industry markup, calculated by the method of De Loecker, Eeckhout, and Unger 2020. 
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Figure 6. Mean Industry Displacement Hazard and Industry Concentration 
A. Four-firm share of sales, NETS data 

 
B. Herfindahl-Hirschman Index, Sales 

 
Note: Binned scatter plot from NETS data 1990-2014, showing mean annual displacement 
hazard for 8-digit SIC industries after controlling for year plotted against industry 
concentration measures. 
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Appendix 

Supplementary Tables 

Summary Statistics 

Table A1. Mean Log Values, Year 2000 

 

Firm rank 

1 – 4  

Firm rank 

5 - 8 

Net Property, Plant, and Equipment 5.37 4.33 

Intangibles 5.63 4.76 

R&D 0.74 0.34 

Organizational Capital 4.63 3.78 

Balance Sheet Intangibles 2.83 1.71 

software Stock 1.07 0.59 

Patent Stock 1.26 0.86 

Acquisition Stock 1.03 0.82 

Advertising/Marketing Stock 1.02 0.66 

Lobbying Stock 0.16 0.07 

Markup 1.35 1.37 
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Sector displacement hazards 

Table A2. Displacement Hazard from Top 4 Firms, Best-fit trend with single break 

Data Break year Trend (𝛼) Change in trend (𝛽) 

Compustat Sector, (6-digit NAICS industries) 
     

Nondurable mfg. 2000 0.0017 (0.0008)** -0.0052 (0.0016)*** 

Durable mfg. 1997 0.0032 (0.0007)*** -0.0059 (0.0011)*** 

Transport, utilities 2003 0.0012 (0.0009) -0.0059 (0.0021)*** 

Trade, services 1998 0.0017 (0.0009)* -0.0052 (0.0015)*** 

Finance 1999 0.0029 (0.0014)** -0.0046 (0.0026)* 

 

NETS Sector (8-digit SIC industries    

Farms 2007 0.0014 (0.0010) -0.0068 (0.0034)* 

Oil and gas extraction 2007 0.0010 (0.0020) -0.0116 (0.0066)* 

Mining, except oil and gas 1998 0.0019 (0.0020) -0.0056 (0.0026)** 

Support activities for mining 2000 0.0033 (0.0029) -0.0063 (0.0041) 

Construction 2002 0.0001 (0.0011) -0.0022 (0.0019) 

Transportation equipment 1998 0.0051 (0.0042) -0.0084 (0.0053) 

Retail trade 1995 0.0064 (0.0026)** -0.0080 (0.0028)*** 

Broadcasting and telecommunications 2005 0.0031 (0.0014)** -0.0084 (0.0035)** 

Securities, commodity contracts, and investments 2001 0.0035 (0.0021)* -0.0069 (0.0033)** 

Real estate 1997 0.0010 (0.0045) -0.0040 (0.0054) 

Management of companies and enterprises - 

Administrative and support services 
2000 0.0015 (0.0019) -0.0035 (0.0027) 

Waste management and remediation services 2005 0.0004 (0.0015) -0.0060 (0.0041) 

Ambulatory health care services 1996 0.0055 (0.0049) -0.0084 (0.0056) 

Note: Standard errors in parentheses, * p<.1, ** p<.05, *** p<.01. Break years are estimated using the 

supremum Wald test. The trend and change in trend after the break are determined from a simple OLS 

regression of the annual hazard rates on these two terms (see text). 
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Different production function estimations 

 
Table A3. Displacement hazard using different productivity estimates 
 

 

Labor 

productivity OLS 

Ackerberg, 

Caves, Frazer 

Levinsohn, 

Petrin Olley, Pakes    

      

Net PPE -0.0366*** -0.0302*** -0.0253*** -0.0280*** -0.0284*** 

 (0.0023) (0.0027) (0.0027) (0.0027) (0.0027) 

      

Intangibles -0.0152*** -0.0262*** -0.0295*** -0.0273*** -0.0268*** 

 (0.0020) (0.0028) (0.0029) (0.0029) (0.0028) 

      

Productivity -0.0143*** -0.0945*** -0.0915*** -0.0889*** -0.0784*** 

 (0.0039) (0.0078) (0.0079) (0.0081) (0.0089) 

      

Observations 29571 27097 27097 27097 26996 

Adj. R-squared 0.082 0.093 0.091 0.091 0.087 

Note: Dependent variable is displacement from top 4 firms ranked by sales. Standard errors clustered by 

firm in parentheses, * p<.1, ** p<.05, *** p<.01. Includes industry and year fixed effects. Independent 

variables are in logs. 
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Markups and Industry Concentration 

Table A4. Displacement Hazards and Markups 

 1 2 3 4 5 

Net PPE -0.0494*** -0.0454*** -0.0494*** -0.0494*** -0.0497*** 

 (0.0025) (0.0027) (0.0025) (0.0025) (0.0025) 

Intangibles -0.0066*** -0.0070*** -0.0066*** -0.0067*** -0.0062*** 

 (0.0019) (0.0019) (0.0019) (0.0019) (0.0019) 

Lagged markup 0.0905***  0.0935*** 0.0898***  

 (0.0112)  (0.0175) (0.0112)  

Lag 5 markup  0.0678***    

  (0.0117)    

L.markup x after 2000   -0.0046   

   (0.0183)   

L.markup x High R&D    0.0039  

    (0.0047)  

Lag markup x sector      

Nondurable mfg.     0.0999*** 

     (0.0188) 

Durable mfg.     0.1136*** 

     (0.0140) 

Transportation, utilities     0.0872*** 

     (0.0250) 

Wholesale, retail     0.0996*** 

     (0.0227) 

Finance      0.0610*** 

     (0.0114) 

Services     0.1050*** 

     (0.0116) 

Other     0.1334*** 

     (0.0201) 

      

Observations 30189 25603 30189 30189 30189 

R-squared 0.112 0.108 0.112 0.112 0.113 

Note: Standard errors clustered by industry in parentheses, * p<.1, ** p<.05, *** p<.01. Industry and year 

fixed effects. Markups are calculated by the method of De Loecker, Eeckhout, and Unger 2020. 
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Table A5. Displacement Hazards and Industry Four-firm Concentration Ratio 

 1 2 3 

Concentration Ratio -0.1284*** -0.1196***              

 (0.0015) (0.0017)              

After 2000 x concentration  -0.0149***              

  (0.0008)              

Sector x concentration    

Mining, construction   -0.1262*** 

   (0.0023) 

Non-durable manufacturing   -0.1297*** 

   (0.0017) 

Durable manufacturing   -0.1282*** 

   (0.0017) 

Transportation, utilities   -0.1292*** 

   (0.0027) 

Trade   -0.1306*** 

   (0.0017) 

Finance   -0.1278*** 

   (0.0030) 

Services   -0.1260*** 

   (0.0018) 

Other   -0.1196*** 

   (0.0078) 

    

Observations               151,896                151,896                151,896  

R-squared 0.063 0.050 0.063 

Note: Standard errors clustered by industry in parentheses, * p<.1, ** p<.05, *** p<.01. 
Industry and year fixed effects. Concentration is industry share of revenues of the top 4 
firms in NETS 8-digit SIC industries.  
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Markups 

De Loecker and Eeckhout (2017) assume a revenue production function, 

(A1) 

𝑞𝑖𝑡 = 𝛽𝑣𝑖𝑡 + 𝛾𝑘𝑖𝑡 + 𝜔𝑖𝑡 + 𝜖𝑖𝑡 

where 𝑞𝑖𝑡 is log deflated revenues for firm i at time t, 𝑣𝑖𝑡 is log deflated cost of goods sold, 

𝑘𝑖𝑡 is log deflated capital, 𝜔𝑖𝑡 is unobserved productivity, and 𝜖𝑖𝑡 is an error term capturing 

unanticipated shocks and measurement error. They further assume an AR(1) process so that 

(A2) 

𝜔𝑖𝑡 = 𝜌𝜔𝑖𝑡−1 + 𝜉𝑖𝑡 . 
They use a two-stage estimation, first regressing 

(A3) 

𝑞𝑖𝑡 = 𝛽𝑣𝑖𝑡 + 𝛾𝑘𝑖𝑡 + ℎ(𝑣𝑖𝑡 , 𝑘𝑖𝑡) + 𝜖𝑖𝑡  

where ℎ(𝑣𝑖𝑡 , 𝑘𝑖𝑡) is a non-parametric polynomial (we use a quadratic form). This regression 

gives us an estimate of predicted output, 𝑞̂𝑖𝑡, purged of unanticipated shocks and 

measurement error. We can then define 

(A4) 

𝜉̂𝑖𝑡(𝛽, 𝛾, 𝜌) ≡ (𝑞̂𝑖𝑡 − 𝛽𝑣𝑖𝑡 − 𝛾𝑘𝑖𝑡) − 𝜌(𝑞̂𝑖𝑡−1 − 𝛽𝑣𝑖𝑡−1 − 𝛾𝑘𝑖𝑡−1).  
Following De Loecker and Warzynski (2012) then have moment conditions 

(A5) 

𝐸 [𝜉̂𝑖𝑡(𝛽, 𝛾, 𝜌) (
𝑣𝑖𝑡−1

𝑘𝑖𝑡−1
)] = 0. 

Using GMM, we obtain estimates of 𝛽 and calculate markups as 

(A6) 

𝜇𝑖𝑡 ≡ 𝛽̂𝑒
(𝑞𝑖𝑡−𝜖̂𝑖𝑡)

𝑣𝑖𝑡
⁄

 

where 𝜖𝑖̂𝑡 is the residual from (A3). 
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