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AI and Jobs: the role of demand 

By James Bessen,  

Technology & Policy Research Initiative, Boston University School of Law 

 

 

Abstract: In manufacturing, technology has sharply reduced jobs in recent decades. 

But before that, for over a century, employment grew, even in industries experiencing rapid 

technological change. What changed? Demand was highly elastic at first and then became 

inelastic. The effect of artificial intelligence (AI) on jobs will similarly depend critically on the 

nature of demand. This paper presents a simple model of demand that accurately predicts 

the rise and fall of employment in the textile, steel, and automotive industries. This model 

provides a useful framework for exploring how AI is likely to affect jobs over the next 10 or 

20 years.  

 

JEL codes: J2, O3, N10 
 
Keywords: Artificial intelligence, automation, technical change, sectoral growth, labor 
demand, computer technology, deindustrialization 

 

Forthcoming chapter in Economics of Artificial Intelligence, Agrawal, Gans, and Goldfarb, 2018. 
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There is widespread concern today that artificial intelligence technologies will create 

mass unemployment during the next 10 or 20 years. One recent paper concluded that new 

information technologies will put “a substantial share of employment, across a wide range of 

occupations, at risk in the near future” (Frey and Osborne 2013).  

The example of manufacturing decline provides good reason to be concerned about 

technology and job losses. In 1958, the US broadwoven textile industry employed over 300 

thousand production workers and the primary steel industry employed over 500 thousand. 

By 2011, broadwoven textiles employed only 16 thousand and steel employed only 100 

thousand production workers.1 Some of these losses can be attributed to trade, especially 

since the mid-1990s. However, overall since the 1950s, most of the decline appears to come 

from technology and changing demand (Rowthorn and Ramaswamy 1999).  

But the example of manufacturing also demonstrates that the effect of technology on 

employment is more complicated than a simple story of “automation causes job losses” in 

the affected industries. Indeed, Figure 1 shows how textiles, steel, and automotive 

manufacturing all enjoyed strong employment growth during many decades that also 

experienced very rapid productivity growth. Despite persistent and substantial productivity 

growth, these industries have spent more decades with growing employment than with job 

losses. This “inverted U” pattern appears to be quite general for manufacturing industries 

(Buera and Kaboski 2009, Rodrik 2016). 

The reason automation in textiles, steel, and automotive manufacturing led to strong 

job growth has to do with the effect of technology on demand, as I explore below. New 

technologies do not just replace labor with machines, but, in a competitive market, 

                                                
1 These figures are for the broadwoven fabrics industry using cotton and manmade fibers, SIC 2211 and 2221, 
and the steel works, blast furnaces, and rolling mills industry, SIC 3312. 
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automation will reduce prices. In addition, technology may improve product quality, 

customization, or speed of delivery. All of these things can increase demand. If demand 

increases sufficiently, employment will grow even though the labor required per unit of 

output declines.  

Of course, job losses in one industry might be offset by employment growth in other 

industries. Such macroeconomic effects are covered by other papers in this volume (Sachs; 

Aghion et al.). This paper explores the effect of technology on employment in the affected 

industry itself. The rise and fall of employment poses an important puzzle. While a 

substantial literature has looked at structural change associated with technology, I argue that 

the most widely accepted explanations for deindustrialization are inconsistent with the 

observed historical pattern. To explain the inverted U pattern, I present a very simple model 

that shows why demand for these products was highly elastic during the early years and why 

demand became inelastic over time. This model forecasts the rise and fall of employment in 

these industries with reasonable accuracy: the solid line in Figure 1 shows those predictions. 

I then explore the implications of this model for the future impact of artificial intelligence 

over the next two decades. 

Structural change 

The inverted U pattern in Figure 1 is also seen in the relative share of employment in 

the whole manufacturing sector, shown in Figure 2. Logically, the rise and fall of the sector 

as a whole in this chart results from the aggregate rise and fall of separate manufacturing 

industries such as those in Figure 1. Yet explanations of this phenomenon based on broad 

sector-level factors face a challenge because individual industries show rather disparate 

patterns. For example, employment in the automotive industry appears to have peaked 
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nearly a century after textile employment peaked. Data on individual industries are needed to 

analyze such disparate responses. 

The literature on structural change provides two sorts of accounts for the relative 

size of the manufacturing sector, one based on differential rates of productivity growth, the 

other based on different income elasticities of demand.2 Baumol (1967) showed that the 

greater rate of technical change in manufacturing industries relative to services leads to a 

declining share of manufacturing employment under some conditions (see also Lawrence 

and Edwards 2013, Ngai and Pissarides 2007, Matsuyama 2009). 

 But differences in productivity growth rates do not seem to explain the initial rise in 

employment. For example, during the 19th century, the share of employment in agriculture 

fell while employment in manufacturing industries such as textiles and steel soared both in 

absolute and relative terms. But labor productivity in these manufacturing industries grew 

faster than labor productivity in agricultural. Parker and Klein (1966) find that labor 

productivity in corn, oats, and wheat grew 2.4%, 2.3%, and 2.6% per annum from 1840-60 

to 1900-10. In contrast, labor productivity in cotton textiles grew 3.0% per year from 1820 

to 1900 and labor productivity in steel grew 3.0% from 1860 to 1900.3 Nevertheless, 

employment in cotton textiles and in primary iron and steel manufacturing grew rapidly then.  

The growth of manufacturing relative to agriculture surely involves some general 

equilibrium considerations, perhaps involving surplus labor in the agricultural sector (Lewis 

1954). But at the industry level, rapid labor productivity growth along with job growth must 

mean a rapid growth in the equilibrium level of demand—the amount consumed must 

increase sufficiently to offset the labor-saving effect of technology. For example, although 

                                                
2 Acemoglu and Guerrieri (2008) also propose an explanation based on differences in capital deepening. 
3 My estimates, data described below. 
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labor productivity in cotton textiles increased nearly 30-fold during the nineteenth century, 

consumption of cotton cloth increased 100-fold. The inverted U thus seems to involve an 

interaction between productivity growth and demand. 

A long-standing literature sees sectoral shifts arising from differences in the income 

elasticity of demand. Clark (1940), building on earlier statistical findings by Engel (1857) and 

others, argued that necessities such as food, clothing, and housing have income elasticities 

that are less than one (see also Boppart 2014, Comin, Lashkari, and Mestieri 2015, 

Kongsamut, Rebelo, and Xie 2001 and Matsuyama 1992 for more general treatments of 

nonhomothetic preferences). The notion behind “Engel’s Law” is that demand for 

necessities becomes satiated as consumers can afford more, so that wealthier consumers 

spend a smaller share of their budgets on necessities. Similarly, this tendency is seen playing 

out dynamically. As nations develop and their incomes grow, the relative demand for 

agricultural and manufactured goods falls and, with labor productivity growth, relative 

employment in these sectors falls even faster.  

This explanation is also incomplete, however. While a low income elasticity of 

demand might explain late 20th century deindustrialization, it does not easily explain the 

rising demand for some of the same goods during the nineteenth century. By this account, 

cotton textiles are a necessity with an income elasticity of demand less than one. Yet during 

the 19th century, the demand for cotton cloth grew dramatically as incomes rose. That is, 

cotton cloth must have been a “luxury” good then. Nothing in the theory explains why the 

supposedly innate characteristics of preferences for cloth changed. 

It would seem that the nature of demand changed over time. Matsuyama (2002) 

introduced a model where the income elasticity of demand changes as incomes grow (see 

also Foellmi and Zweimueller 2008). In this model, consumers have hierarchical preferences 
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for different products. As their incomes grow, consumer demand for existing products 

saturates and they progressively buy new products further down the hierarchy. Given 

heterogeneous incomes that grow over time, this model can explain the inverted U pattern. 

It also corresponds, in a highly stylized way, to the sequence of growth across industries seen 

in Figure 1.  

Yet there are two reasons that this model might not fit the evidence very well for 

individual industries. First, the timing of the growth of these industries seems to have much 

more to do with particular innovations that began eras of accelerated productivity growth 

than with the progressive saturation of other markets. Cotton textile consumption soared 

following the introduction of the power loom to US textile manufacture in 1814; steel 

consumption grew following the US adoption of the Bessemer steelmaking process in 1856, 

and Henry Ford’s assembly line in 1913 initiated rapid growth in motor vehicles.  

Second, there is a general problem of looking at the income elasticity of demand as 

the main driver of structural change: the data suggest that prices were often far more 

consequential for consumers than income. From 1810 to 2011, real GDP per capita rose 30-

fold, but output per hour in cotton textiles rose over 800-fold; inflation-adjusted prices 

correspondingly fell by three orders of magnitude. Similarly, from 1860 to 2011, real GDP 

per capita rose 17 fold, but output per hour in steel production rose over 100 times and 

prices fell by a similar proportion. The literature on structural change has focused on the 

income elasticity of demand, often ignoring price changes. Yet these magnitudes suggest that 

low prices might substantially contribute to any satiation of demand. I develop a model that 

includes both income and price effects on demand, allowing both to have changing 

elasticities over time. 
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The inverted U pattern in industry employment can be explained by a declining price 

elasticity of demand. If we assume that rapid productivity growth generated rapid price 

declines in competitive product markets, then these price declines would be a major source 

of demand growth. During the rising phase of employment, equilibrium demand had to 

increase proportionally faster than the fall in prices in response to productivity gains. During 

the deindustrialization phase, demand must have increased proportionally less than prices. 

Below I obtain estimates that show the price elasticity of demand falling in just this manner. 

To understand why this may have happened, it is helpful to return to the origins of 

the notion of a demand curve. Dupuit (1844) recognized that consumers placed different 

values on goods used for different purposes. A decrease in the price of stone would benefit 

the existing users of stone, but consumers would also buy stone at the lower price for new 

uses such as replacing brick or wood in construction or for paving roads. In this way, Dupuit 

showed how the distribution of uses at different values gives rise to what we now call a 

demand curve, allowing for a calculation of consumer surplus.  

This paper proposes a parsimonious explanation for the rise and fall of industry 

employment based on a simple model where consumer preferences follow such a 

distribution function. The basic intuition is that when most consumers are priced out of the 

market (the upper tail of the distribution), demand elasticity will tend to be high for many 

common distribution functions. When, thanks to technical change, price falls or income rises 

to the point where most consumer needs are met (the lower tail), then the price and income 

elasticities of demand will be small. The elasticity of demand thus changes as technology 

brings lower prices to the affected industries and higher income to consumers generally.  
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Model 

Simple model of the Inverted U 

Consider production and consumption of two goods—cloth and a general 

composite good—in autarky. The model will focus on the impact of technology on 

employment in the textile industry under the assumption that the output and employment in 

the textile industry are only a small part of the total economy. 

Production 

Let the output of cloth, 𝑞 = 𝐴 ∙ 𝐿, where L is textile labor and A is a measure of 

technical efficiency. Changes in A represent labor-augmenting technical change. Note that 

this is distinct from those cases where automation completely replaces human labor. Bessen 

(2016) shows that such cases are rare and that the main impact of automation consists of 

technology augmenting human labor. 

I initially assume that product and labor markets are competitive so that the price of 

cloth is 

(1)  𝑝 = 𝑤 𝐴,  

where w is the wage. Below, I will test whether this assumption holds in the cotton and steel 

industries. 

Then, given a demand function, 𝐷(𝑝), equating demand with output implies 

 𝐷 𝑝 = 𝑞 = 𝐴 ∙ 𝐿  or 

(2) 𝐿 =  𝐷 𝑝 /𝐴. 

We seek to understand whether an increase in A, representing technical 

improvement, results in a decrease or increase in employment L. That depends on the price 
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elasticity of demand, 𝜖, assuming income is constant. Taking the partial derivative of the log 

of (2) with respect to the log of A, 

𝜕 ln 𝐿
𝜕 ln𝐴 =

𝜕 ln𝐷(𝑝)
𝜕 ln𝑝

𝜕 ln𝑝
𝜕 ln𝐴 − 1 =  𝜖 − 1,        𝜖 ≡ −

𝜕 ln𝐷(𝑝)
𝜕 ln𝑝  

If the demand is elastic (𝜖 > 1), technical change will increase employment; if demand is 

inelastic (𝜖 < 1), jobs will be lost. In addition to this price effect, changing income might 

also affect demand as I develop below. 

Consumption 

Now, consider a consumer’s demand for cloth. Suppose that the consumer places 

different values on different uses of cloth. The consumer’s first set of clothing might be very 

valuable and the consumer might be willing to purchase even if the price were quite high. 

But cloth draperies might be a luxury that the consumer would not be willing to purchase 

unless the price were modest. Following Dupuit (1844) and the derivation of consumer 

surplus used in industrial organization theory, these different values can be represented by a 

distribution function. Suppose that the consumer has a number of uses for cloth that each 

give her value v, no more, no less. The total yards of cloth that these uses require can be 

represented as f(v). That is, when the uses are ordered by increasing value, f(v) is a scaled 

density function giving the yards of cloth for value v. If we suppose that our consumer will 

purchase cloth for all uses where the value received exceeds the price of cloth, 𝑣 > 𝑝, then 

for price p, her demand is 

𝐷 𝑝 = 𝑓 𝑧 𝑑𝑧
!

!
= 1− 𝐹 𝑝 ,        𝐹(𝑝) ≡ 𝑓 𝑧 𝑑𝑧

!

!
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where I have normalized demand so that maximum demand is 1. With this normalization, f 

is the density function and F is the cumulative distribution function. I assume that these 

functions are continuous with continuous derivatives for p>0. 

The total value she receives from these purchases is then the sum of the values of all 

uses purchased, 

𝑈 𝑝 = 𝑧 ∙ 𝑓 𝑧 𝑑𝑧
!

!
. 

This quantity measures the gross consumer surplus and can be related to the standard 

measure of net consumer surplus used in industrial organization theory (Tirole 1988, p. 8) 

after integrating by parts: 

𝑈 𝑝 = 𝑧 ∙ 𝑓 𝑧 𝑑𝑧
!

!
= 𝑧 ∙ 𝐷′ 𝑧 𝑑𝑧

!

!
= 𝑝 ∙ 𝐷 𝑝 + 𝐷 𝑧 𝑑𝑧.

!

!
 

In words, gross consumer surplus equals the consumer’s expenditure plus net consumer 

surplus. I interpret U as the utility that the consumer derives from cloth.4 

The consumer also derives utility from consumption of the general good, x, and 

from leisure time. Let the portion of time the consumer works be l so that leisure time is  

1 – l. Assume that the utility from these goods is additively separable from the utility of cloth 

so that total utility is 

𝑈 𝑣 + 𝐺(𝑥, 1− 𝑙) 

where G is a concave differentiable function. The consumer will select v, x, and l to 

maximize total utility subject to the budget constraint 

                                                
4 Note that in order to use this model of preferences to analyze demand over time, one of two assumptions 
must hold. Either there are no significant close substitutes for cloth or the prices of these close substitutes 
change relatively little. Otherwise, consumers would have to take the changing price of the potential substitute 
into account before deciding which to purchase. If there is a close substitute with a relatively static price, the 
value v can be reinterpreted as the value relative to the alternative. Below I look specifically at the role of close 
substitutes for cotton cloth, steel, and motor vehicles. 
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𝑤𝑙 ≥ 𝑥 + 𝑝𝐷 𝑣  

where the price of the composite good is taken as numeraire. The consumer’s Lagrangean 

can be written 

ℒ 𝑣, 𝑥, 𝑙 = 𝑈 𝑣 + 𝐺(𝑥, 1− 𝑙)+  𝜆 𝑤𝑙 − 𝑥 − 𝑝 ∙ 𝐷 𝑣 . 

Taking the first order conditions, and recalling that under competitive markets, 𝑝 = 𝑤 𝐴, 

we get 

𝑣 = 𝐺!
𝑝
𝑤 =

𝐺!
𝐴 ,          𝐺! ≡

𝜕 𝐺
𝜕 𝑙 . 

𝐺! represents the marginal value of leisure time and the second equality results from applying 

assumption (1). In effect, the consumer will purchase cloth for uses that are at least as 

valuable as the real cost of cloth valued relative to leisure time. Note that if 𝐺! is constant, 

the effect of prices and the effect of income are inversely related. This means that the price 

elasticity of demand will equal the income elasticity of demand. However, the marginal value 

of leisure time might very well increase or decrease with income; for example, if the labor 

supply is backward bending, greater income might decrease equilibrium 𝐺! so that leisure 

time increases. To capture that notion, I parameterize 𝐺! = 𝑤! so that 

(3)    𝑣 = 𝑤! 𝐴 = 𝑤!!!𝑝,        𝐷 𝑣 = 1− 𝐹 𝑣 . 

Elasticities 

Using (3), the price elasticity of demand holding wages constant solves to 

𝜖 = −
𝜕 ln𝐷
𝜕 ln𝑝 =

𝜕 ln𝐷 𝑣
𝜕 ln 𝑣

𝜕 ln 𝑣
𝜕 ln𝑝 =

𝑝𝑓(𝑣)
1− 𝐹(𝑣)𝑤

!!! 

and the income (wage) elasticity of demand holding price constant is 

𝜌 =
𝜕 ln𝐷
𝜕 ln𝑤 =

𝜕 ln𝐷 𝑣
𝜕 ln 𝑣

𝜕 ln 𝑣
𝜕 ln𝑤 = 1− 𝛼 𝜖. 
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These elasticities change with prices and wages or alternatively with changes in labor 

productivity, A. The changes can create an inverted-U in employment. Specifically, if the 

price elasticity of demand, 𝜖, is greater than 1 at high prices and lower than 1 at low prices, 

then employment will trace an inverted U as prices decline with productivity growth. At high 

prices relative to income, productivity improvements will create sufficient demand to offset 

job losses; at low prices relative to income, they will not. 

A preference distribution function with this property can generate a kind of industry 

life cycle as technology continually improves labor productivity over a long period of time. 

An early stage industry will have high prices and large unmet demand, so that price decreases 

result in sharp increases in demand; a mature industry will have satiated demand so further 

price drops only produce an anemic increase in demand. 

A necessary condition for this pattern is that the price elasticity of demand must 

increase with price over some significant domain, so that it is smaller than 1 at low prices but 

larger than 1 at high prices. It turns out that many distribution functions have this property. 

This can be seen from the following propositions (proofs in the Appendix): 

Proposition 1. Single-peaked density functions. If the distribution density function, f, 
has a single peak at 𝑝 = 𝑝, then !"

!"
≥ 0  ∀ 𝑝 < 𝑝. 

Proposition 2. Common distributions. If the distribution is normal, lognormal, 
exponential, or uniform, there exists a 𝑝∗such that for 0 < 𝑝 < 𝑝∗, 𝜖 < 1, and for 
𝑝∗ < 𝑝, 𝜖 > 1.  

These propositions suggest that the model of demand derived from distributions of 

preferences might be broadly applicable. The second proposition is sufficient to create the 

inverted U curve in employment as long as price starts above 𝑝∗ and declines below it. 
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Empirical estimates 

This very simple model does not consider numerous factors that might influence 

demand. It does not consider the role of close substitutes or the effect of the business cycle 

on demand. New technology might create new products that generate new demand, altering 

the distribution, or new substitutes that decrease demand. Global trade might alter 

downstream industries, affecting the demand for intermediate goods such as cloth or steel. 

Nevertheless, the model appears to predict actual demand over a historical timeframe 

reasonably well. 

Assuming that the preference distribution is lognormal, I estimate the per capita 

demand functions for these three commodities (see Bessen 2017 for details). The model fits 

the data quite closely, realizing R-squareds of .982 or higher. Using these predictions, I 

estimate the price elasticity of demand at each end of the estimation sample: 

Cotton Steel Automotive 
Year Elasticity Year Elasticity Year Elasticity 
1810 2.13 1860 3.49 1910 6.77 
1995 0.02 1982 0.16 2007 0.15 

 

Demand was initially highly elastic, becoming highly inelastic. 

Using estimated per capita demand, labor demand can be calculated incorporating 

population size, import penetration, labor productivity, and hours worked. These estimate 

are shown as the solid lines in Figure 1. The estimates appear to be accurate over long 

periods of time. There are notable drops in employment during the Great Depression and 

excess employment in motor vehicles during World War II. Finally, employment falls below 

the estimates when globalization takes a bite out of employment in textiles after 1995 and 

steel after 1982.  
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Thus even though this overly simple model does not account for all of the factors 

that affect demand, it nevertheless provides a succinct explanation of the inverted U in 

employment in these manufacturing industries. 

Implication for AI 

The importance of demand 

Although the model presented here appears to provide a good explanation for how 

demand mediated the impact of technology in the past, what is the relevance of this analysis 

for new technologies? There is, of course, no guarantee that AI or other new technologies 

will be applied in markets with preference distributions similar to those of the textile, steel, 

and automotive industries. 

The relevance of this history is more general. Specifically, the responsiveness of 

demand is key to understanding whether major new technologies will decrease or increase 

employment in affected industries. Productivity-enhancing technology will increase industry 

employment if product demand is sufficiently elastic. If the price elasticity of demand is 

greater than one, the increase in demand will more than offset the labor saving effect of the 

technology. And demand will likely be sufficiently elastic if the technology is addressing large 

unmet needs affecting people with diverse preferences and uses for the technology. This 

situation corresponds to the upper tail of the distribution function. If, on the other hand, AI 

is targeted at more satiated markets, then jobs will be lost in the affected industries, although 

not necessarily in the economy as a whole. 

The pace of change of a new technology is not sufficient by itself to determine the 

impact of that technology on employment. For example, a common view holds that faster 

technical change is more likely to eliminate jobs. Some people argue that because of Moore’s 
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Law, the rate of change will be fast for AI and this will cause unemployment (Ford 2015). 

However, my analysis highlights the importance of demand in mediating the impact of 

automation. If demand is sufficiently elastic and AI does not completely replace humans, 

then technical change will create jobs rather than destroy them. In this case, a faster rate of 

technical change will actually create faster employment growth rather than job losses. 

The demand response to AI is, of course, an empirical question and, therefore, an 

important part of the AI research agenda. 

Research agenda 

To understand the interaction between AI and demand over the next 10 or 20 years, 

empirical researchers will need answers to several specific questions. 

First, to what extent will AI replace humans and to what extent will it, instead, 

merely augment human capabilities? That is, to what extent will AI completely automate 

occupations and to what extent will it, instead, merely automate some tasks but not all tasks 

performed by an occupation. If humans are completely replaced, demand no longer affects 

employment because there isn’t any demand for humans. In the past, despite extensive 

productivity growth, technology has almost always only partially automated work. Consider 

what happened to the 271 detailed occupations used in the 1950 Census by 2010.  Most 

occupations listed then still exist in some form (sometimes grouped differently) today. Some 

occupations were eliminated for a variety of reasons. In many cases, demand for the 

occupational services declined (e.g., boardinghouse keepers); in some cases, demand declined 

because of technological obsolescence (e.g., telegraph operators). This, however, is not the 

same as automation. In only one case—elevator operators—can the decline and 
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disappearance of an occupation be largely attributed to automation. Nevertheless, this 60-

year period witnessed extensive automation; it was just mostly partial automation. 

This same pattern is likely to be true for AI over the next 10 or 20 years for the 

simple reason that although AI can outperform humans on some tasks, today’s AI fails 

miserably at other tasks that human performs. A casual review of current developments 

suggests that over the near term AI may be able to completely automate some jobs of drivers 

and warehouse workers, but most AI applications are targeted toward automating just some 

subset of tasks performed by specific occupations. Nevertheless, a more rigorous empirical 

investigation is needed to measure the extent to which AI is bringing or will bring complete 

vs. partial automation. 

To the extent that automation continues to be partial rather than complete in the 

near term, demand will be key. This raises a second question: to what extent will the effect of 

AI on demand and employment during the next 10 or 20 years be similar to the effect that 

AI and computer automation generally had over the last several decades? Computers have 

been used to automate work in activities such as accounting and loan-making since the 

1950s. The first fully automatic loan application system was installed in 1972. In 1987 an 

artificial intelligence system was first put into commercial operation in a system used to 

detect credit fraud. Since then, AI applications have been used to automate a variety of tasks 

in other industries and occupations, such as the electronic discovery of legal documents for 

litigation. 

This means that we already have some evidence about the effects of AI and of 

computer automation generally. It does not seem that computer automation or AI has so far 

led to significant job losses; the booming market for electronic discovery applications, for 

instance, has been associated with an increase in the employment of paralegals. A few studies 
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have made estimates of the employment impact of computer technology (Gaggl and Wright 

2017, Akerman et al. 2015), finding, if anything, a modest increase in employment following 

technology adoption.5 Further studies could deepen our understanding of the impact of 

computer automation on employment and how this impact differs across occupations and 

industries. 

Also, we need to understand how AI applications in the near future will differ from 

those of the recent past. The model above provides a framework to analyze this question. In 

particular, to the extent that the new applications target the same services and industries as 

did the computer automation of the recent past, then we should expect the elasticity of 

demand to remain similar over the next 10 or 20 years, perhaps with a modest decline. That 

is, the elasticity of demand is not likely to change very quickly. On the other hand, AI might 

introduce entirely new products and services that tap into otherwise unmet needs and wants. 

In this case, there may  be new and unanticipated sources of employment growth. Research 

can help determine the extent of change in the sorts of applications, occupations, and 

industries affected by new AI applications that are also addressed by existing technologies.  

To the extent that AI creates wholly new applications, prediction will be more difficult. 

Indeed, in the past predictions about technological unemployment have reliably failed to 

anticipate major new applications of technology and major new sources of demand.  

A critical aspect of this research concerns the unevenness of the potential impact of 

AI. While AI might not create overall unemployment in the near future, it will likely 

eliminate jobs in some occupations while creating new jobs in others. The need to retrain 

and transition workers to new occupations, sometimes in new locations, might be highly 

disruptive even though the total employment rate remains high. 

                                                
5 And, importantly, impacts that differed across skill groups. 
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Finally, it is important to note that this analytical framework and research agenda are 

very much limited to the next 10 or 20 years for two reasons. First, beyond a couple of 

decades, markets might well become saturated. Suppose, for example, that demand is highly 

elastic for many financial, health, and other services today so that information technology 

increases employment in these markets. If AI rapidly reduces costs or improves the quality 

of these services, the elasticity of demand will decline. That is, these markets might see the 

kind of reversals in employment growth seen in Figure 1.  

Second, in the future, AI might very well be able to completely replace many more 

occupations. Then the effect of AI on demand will no longer matter for these occupations. 

For now, however, understanding how and where AI affects demand is critical to 

understanding employment effects. 
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Appendix 

Propositions 

To simplify notation, let the wage remain constant at 1. Then 

𝜖 𝑝 =
𝑝 𝑓(𝑝)
1− 𝐹(𝑝) 

so that 

𝜕 𝜖 𝑝
𝜕 𝑝 =

𝑓!𝑝
1− 𝐹 +

𝑓!𝑝
1− 𝐹 ! +

𝑓
1− 𝐹 = 𝜖

𝑓′
𝑓 +

𝑓
1− 𝐹 +

1
𝑝  

Note that the second and third terms in parentheses are positive for 𝑝 > 0; the first term 

could be positive or negative. A sufficient condition for !"
!"
≥ 0 is 

(A1) 

𝑓′
𝑓 +

𝑓
1− 𝐹 ≥ 0. 

Proposition 1. For a single peaked distribution with mode 𝑝, for 𝑝 < 𝑝 , 𝑓! ≥ 0 so that 

!"
!"
≥ 0 .  

Proposition 2. For each distribution, I will show that 

𝜕𝜖
𝜕𝑝 ≥ 0,     lim

!→!
𝜖 = 0,    lim

!→!
𝜖 = ∞. 

Taken together, these conditions imply that for sufficiently high price, 𝜖 > 1, and for a 

sufficiently low price, 𝜖 < 1. 

a. Normal distribution  

𝑓 𝑝 =
1
𝜎𝜑 𝑥 ,      𝐹 𝑝 = Φ 𝑥 ,      𝜖 𝑝 =

𝑝
𝜎

𝜑 𝑥
(1−Φ 𝑥 ) ,     𝑥 ≡

𝑝 − 𝜇
𝜎  
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where 𝜑 and Φ are the standard normal density and cumulative distribution functions 

respectively. Taking the derivative of the density function, 

𝑓!

𝑓 +
𝑓

1− 𝐹 = −
𝑥
𝜎 +

𝜑 𝑥
𝜎 1−Φ 𝑥

. 

A well-known inequality for the normal Mills’ ratio (Gordon 1941) holds that for x>0,6 

(A2) 

𝑥 ≤
𝜑 𝑥

1−Φ 𝑥 . 

Applying this inequality, it is straightforward to show that (A1) holds for the normal 

distribution. This also implies that lim!→! 𝜖 = ∞. By inspection, 𝜖 0 = 0. 

b. Exponential distribution 

𝑓 𝑝 ≡ 𝜆𝑒!!",      𝐹 𝑝 ≡ 1− 𝑒!!",    𝜖 𝑝 = 𝜆𝑝,     𝜆,𝑝 > 0. 

Then 

𝑓!

𝑓 +
𝑓

1− 𝐹 = −𝜆 + 𝜆 = 0 

so (A1) holds. By inspection, 𝜖 0 = 0 and lim!→! 𝜖 = ∞. 

c. Uniform distribution 

𝑓 𝑝 ≡
1
𝑏 ,     𝐹 𝑝 ≡

𝑝
𝑏 ,      𝜖 𝑝 =

𝑝
𝑏 − 𝑝 ,     0 < 𝑝 < 𝑏 

so that 

𝑓!

𝑓 +
𝑓

1− 𝐹 =
1

𝑏 − 𝑝 > 0. 

By inspection, 𝜖 0 = 0 and lim!→! 𝜖 = ∞. 

                                                
6 I present the inverse of Gordon’s inequality. 
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d. Lognormal distribution 

𝑓 𝑝 ≡
1
𝑝𝜎𝜑 𝑥 ,      𝐹 𝑝 ≡ Φ 𝑥 ,       𝜖 𝑝 =

1
𝜎

𝜑 𝑥
1−Φ 𝑥

,    𝑥 ≡
ln𝑝 − 𝜇

𝜎  

so that 

𝜕 𝜖 𝑝
𝜕 𝑝 = 𝜖

𝑓′
𝑓 +

𝑓
1− 𝐹 +

1
𝑝 = 𝜖 −

1
𝑝 −

𝑥
𝑝𝜎 +

𝜑
𝑝𝜎(1−Φ)+

1
𝑝 . 

Cancelling terms and using Gordon’s inequality, this is positive. And taking the limit of 

Gordon’s inequality, lim!→! 𝜖 = ∞. By inspection lim!→! 𝜖 = 0. 
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Figures 

Figure 1. Production Employment in Three Industries 
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Figure 2. Manufacturing Share of the Labor Force 

Sources: US Bureau of the Census 1975; BLS Current Employment Situation. Labor 
force includes agricultural laborers 
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